Advertisement

Quantum Information Processing

, Volume 12, Issue 7, pp 2623–2636 | Cite as

Predominance of entanglement of formation over quantum discord under quantum channels

  • Steve CampbellEmail author
Article

Abstract

We present a study of the behavior of two different figures of merit for quantum correlations, entanglement of formation and quantum discord, under quantum channels showing how the former can, counterintuitively, be more resilient to such environments spoiling effects. By exploiting strict conservation relations between the two measures and imposing necessary constraints on the initial conditions we are able to explicitly show this predominance is related to build-up of the system-environment correlations.

Keywords

Entanglement Open systems Quantum discord Quantum correlations 

Notes

Acknowledgments

The author greatly acknowledges fruitful discussions and exchanges with Drs. Mauro Paternostro, Tomasz Paterek, Laura Mazzola, Thomas Busch, Gianluca Giorgi and Dave Rea.

References

  1. 1.
    Schrödinger, E.: Discussions of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446–451 (1936)ADSCrossRefGoogle Scholar
  3. 3.
    Eisert, J., Plenio, M.: A comparison of entanglement measures. J. Mod. Opt. 46, 145–154 (1999)ADSGoogle Scholar
  4. 4.
    Życzkowski, K.: Volume of the set of separable states. II. Phys. Rev. A 60, 3496–3507 (1999)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Virmani, S., Plenio, M.B.: Ordering states with entanglement measures. Phys. Lett. A 268, 31–34 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Miranowicz, A., Grudka, A.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Okrasa, M., Walczak, Z.: On two-qubit states ordering with quantum discords. EPL 98, 40003 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Gillet, J., Agarwal, G.S., Bastin, T.: Tunable entanglement, antibunching, and saturation effects in dipole blockade. Phys. Rev. A 81, 013837 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Maziero, J., Cleri, L.C., Serra, R.M., Sarandy, M.S.: Long-range quantum discord in critical spin systems. Phys. Lett. A 376, 1540–1544 (2012)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Campbell, S., Mazzola, L., Paternostro, M.: Global quantum correlation in the Ising model. Int. J. Quant. Inf. 9, 1685–1699 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462–467 (2010)CrossRefGoogle Scholar
  15. 15.
    Lorenzo, S., Plastina, F., Paternostro, M.: Role of environmental correlations in the non-Markovian dynamics of a spin system. Phys. Rev. A 84, 032124 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  17. 17.
    Maziero, J., Werlang, T., Fanchini, F.F., Celeri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Maziero, J., Cleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A. 80, 044102 (2009)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012)ADSGoogle Scholar
  23. 23.
    Campbell, S., et al.: Propagation of nonclassical correlations across a quantum spin chain. Phys. Rev. A 84, 052316 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acin, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev A 80, 024103 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Girolami, D., Adesso, G.: Interplay between computable measures of entanglement and other quantum correlations. Phys. Rev. A 84, 052110 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Fanchini, F.F., Cornelio, M.F., de Oliveira, M.C., Caldeira, A.O.: Conservation law for distributed entanglement of formation and quantum discord. Phys. Rev A 84, 012313 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Piani, M., Adesso, G.: Quantumness of correlations revealed in local measurements exceeds entanglement. Phys. Rev. A 85, 040301(R) (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Paini, M., et al.: All nonclassical correlations can be activated into distillable entanglement. Phys. Rev. Lett. 106, 220403 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Streltsov, A., Kampermann, H., Bruß, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Streltsov, A., Kampermann, H., Bruß, D.: Characterizing quantumness via entanglement creation. Int. J. Quant. Inform. 9, 1701–1713 (2011)CrossRefGoogle Scholar
  35. 35.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wooters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  38. 38.
    Al-Qasimi, A., James, D.F.V.: Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. Phys. Rev. A 83, 032101 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)CrossRefGoogle Scholar
  40. 40.
    Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Prabhu, R., Pati, A.K., De, A.S., Sen, U.: Conditions for monogamy of quantum correlations: Greenberger-Horne-Zeilinger versus W states. Phys. Rev. A 85, 040102(R) (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    Cornelio, M.F., et al.: Emergence of the pointer basis through the dynamics of correlations. Phys. Rev. Lett 109, 190402 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Ma, Z.-H., Chen, Z.-H., Fanchini, F.F.: Multipartite quantum correlations in open quantum systems. arxiv:1207.4095Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Quantum Systems UnitOkinawa Institute of Science and TechnologyOkinawaJapan
  2. 2.Department of PhysicsUniversity College CorkCorkRepublic of Ireland

Personalised recommendations