Advertisement

Quantum Information Processing

, Volume 12, Issue 7, pp 2487–2496 | Cite as

Computing hypergraph Ramsey numbers by using quantum circuit

  • Ri Qu
  • Zong-shang Li
  • Juan Wang
  • Yan-ru BaoEmail author
  • Xiao-chun Cao
Article

Abstract

Gaitan and Clark (Phys Rev Lett 108:010501, 2012) have recently shown a quantum algorithm for the computation of the Ramsey numbers using adiabatic quantum evolution. We present a quantum algorithm to compute the two-color Ramsey numbers for \(r\)-uniform hypergraphs by using the quantum counting circuit.

Keywords

Ramsey numbers \(r\)-Uniform hypergraphs Quantum counting Quantum search algorithm 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under Grant No. 61170178. This work also was supported by Tianjin Key Laboratory of Cognitive Computing and Application

References

  1. 1.
    Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. Wiley, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Bollobás, B.: Modern Graph Theory. Springer, New York (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Comb. Dyn. Surv. Ds1, 13 (2011)Google Scholar
  4. 4.
    McKay, B.D., Radziszowski, S.P.: Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms. ACM Press, New York (1991)Google Scholar
  5. 5.
    Gaitan, F., Clark, L.: Ramsey numbers and adiabatic quantum computing. Phys. Rev. Lett. 108, 010501 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: arXiv: quant-ph/0001106.Google Scholar
  7. 7.
    Qu, R., Bao, Y.: Hypergraph Ramsey numbers and adiabatic quantum algorithm. Int. J. Quantum Inform. 10(6), 1250067 (2012)Google Scholar
  8. 8.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  9. 9.
    Mosca, M.: Proceedings of International Workshop on Randomized Algorithms. Aachen University Press, Aachen (1998)Google Scholar
  10. 10.
    Grover, L.: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. ACM Press, New York (1996)Google Scholar
  11. 11.
    Mosca, M.: Quantum Computer Algorithms. Ph.D. thesis, University of Oxford (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ri Qu
    • 1
  • Zong-shang Li
    • 1
  • Juan Wang
    • 1
  • Yan-ru Bao
    • 1
    Email author
  • Xiao-chun Cao
    • 1
  1. 1.School of Computer Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations