Skip to main content
Log in

Deterministic single-qubit operation sharing with five-qubit cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Perfect sharing of arbitrary single-qubit operation (PSASQO) with shared entanglements and LOCC is focused. A symmetric three-party PSASQO scheme is put forward by utilizing the five-qubit cluster state proposed by Briegel and Raussendorf (Phys Rev Lett 86:910, 2001). Some concrete discussions on the scheme are made, including its important features, the essential role of the quantum channel, its direct generalization to more-party cases, the problem of entanglement structure and its application perspective in some peculiar quantum scenario as well as its security analysis. Particularly, the experimental feasibilities of the scheme and its generalizations are demonstrated, i.e., showing the employed unitary operations are local and accessible single-qubit Pauli and two-qubit control NOT operations according to nowaday experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  7. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., et al.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  13. Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788 (1995)

    Article  ADS  Google Scholar 

  14. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  15. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284, 1082 (2011)

    Article  ADS  Google Scholar 

  17. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  18. Bandyopadhyay, S.: Teleportation and secret sharing with pure entangled states. Phys. Rev. A 62, 012308 (2000)

    Article  ADS  Google Scholar 

  19. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys. Rev. A 67, 044302 (2003)

    Article  ADS  Google Scholar 

  20. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  21. Zou, X.B., Pahlke, K., Mathis, W.: Teleportation implementation of nondeterministic quantum logic operations by using linear optical elements. Phys. Rev. A 65, 064305 (2002)

    Article  ADS  Google Scholar 

  22. Dur, W., Vidal, G., Cirac, J.I.: Optimal conversion of nonlocal unitary operations. Phys. Rev. Lett. 89, 057901 (2002)

    Article  ADS  Google Scholar 

  23. Zhang, Y.S., Ye, M.Y., Guo, G.C.: Conditions for optimal construction of two-qubit nonlocal gates. Phys. Rev. A 71, 062331 (2005)

    Article  ADS  Google Scholar 

  24. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74, 032317 (2007)

    Article  ADS  Google Scholar 

  25. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger-Horne-Zeilinger states. Phys. Rev. A 75, 062323 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. Zhao, N.B., Wang, A.M.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A 76, 062317 (2007)

    Article  ADS  Google Scholar 

  27. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    Article  ADS  Google Scholar 

  28. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing single-qubit operation with five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    Article  ADS  Google Scholar 

  29. Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X. S. Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum inf. process. doi:10.1007/s11128-013-0533-9

  30. Liu, D.C., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Shared quantum control via sharing operation on remote single qutrit. Quantum, information processing (to be submitted)

  31. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  32. Gross, D., Kieling, K., Eisert, J.: Potential and limits to cluster-state quantum computing using probabilistic gates. Phys. Rev. A 74, 042343 (2006)

    Article  ADS  Google Scholar 

  33. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  34. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  36. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  37. Zuo, X.Q., Liu, Y.M., Xu, C.J., Zhang, Z.J.: Generalized tripartite scheme for sharing arbitrary 2\(n\)-qudit state. Opt. Commun. 283, 4108 (2010)

    Article  ADS  Google Scholar 

  38. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20103401110007, the NNSFC under Grant Nos.10874122, 10975001, 51072002 and 51272003, the Program for Excellent Talents at the University of Guangdong province (Guangdong Teacher Letter [1010] No.79), and the 211 Project of Anhui University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Liu, Y., Chen, J. et al. Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf Process 12, 2497–2507 (2013). https://doi.org/10.1007/s11128-013-0537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0537-5

Keywords

Navigation