Skip to main content
Log in

Influence of the phase damping for two-qubits system in the dispersive reservoir

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An analytical solution of the master equation for two qubits-field system in the dispersive reservoir are investigated, the qubits are initially in werner states. Under the influence of the damping we investigate the quantum correlation in a two-qubit based on measurement-induced disturbance (MID). We compare MID and entanglement measured by negativity and illustrate their different characteristics. We find the effect of damping on MID is weaker than negativity. Negativity will experience a sudden transition but this will not happen for MID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301–022305 (2008)

    Article  ADS  Google Scholar 

  2. Li N., Luo S.: Measurement-induced disturbance and thermal negativity of qutrit-qubit mixed spin chain. Phys. Rev. A 76, 032327–032335 (2007)

    Article  ADS  Google Scholar 

  3. Datta A., Shaji A., Caves C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502–050505 (2008)

    Article  ADS  Google Scholar 

  4. Lanyon B.P., Barbieri M., Almeida M.P., White A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501–200504 (2008)

    Article  ADS  Google Scholar 

  5. Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901–017904 (2002)

    Article  ADS  Google Scholar 

  6. Henderson L., Vedral V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6903 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Terhal BM., Horodecki M., Leung D.W., DiVincenzo D.P.: The entanglement of purification. J. Math. Phys. 43, 4286–4298 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. DiVincenzo D.P., Horodecki M., Leung D.W., Smolin J.A., Terhal B.M.: Locking classical correlations in quantum states. Phys. Rev. Lett. 92, 067902–067908 (2004)

    Article  ADS  Google Scholar 

  9. Piani M., Horodecki P., Horodecki R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502–090505 (2008)

    Article  ADS  Google Scholar 

  10. Wu S., Poulsen U.V., Mølmer K.: Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality. Phys. Rev. A 80, 032319–032330 (2009)

    Article  ADS  Google Scholar 

  11. Modi K., Paterek T., Son W., Vedral V., Williamson M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501–080504 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Al-Qasimi, A., James, D.F.V.: A comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. 1007, 1814–1817 (2010) arXiv

  13. Galve F., Giorgi G.L., Zambrini R.: Maximally discordant mixed states of two qubits. Phys. Rev. A 83, 012102–012106 (2011)

    Article  ADS  Google Scholar 

  14. Wei T-C., Nemoto K., Goldbart P.M., Kwiat P.G., Munro W.J., Verstraete F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110–022121 (2003)

    Article  ADS  Google Scholar 

  15. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Zheng S.-B., Guo G.-C.: Efficient Scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  17. Bellomo B., Franco R.L., Compagno G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342–032351 (2008)

    Article  ADS  Google Scholar 

  18. Werlang T., Trippe C., Ribeiro G.A.P., Rigolin G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702–095705 (2010)

    Article  ADS  Google Scholar 

  19. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314–032324 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hashem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obada, AS.F., Hessian, H.A., Mohamed, AB.A. et al. Influence of the phase damping for two-qubits system in the dispersive reservoir. Quantum Inf Process 12, 1947–1956 (2013). https://doi.org/10.1007/s11128-012-0503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0503-7

Keywords

Navigation