Advertisement

Quantum Information Processing

, Volume 12, Issue 5, pp 1871–1884 | Cite as

Non-Pauli observables for CWS codes

  • Douglas F. G. Santiago
  • Renato PortugalEmail author
  • Nolmar Melo
Article

Abstract

It is known that nonadditive quantum codes can have higher code dimensions than stabilizer codes for the same length and minimum distance. The class of codeword stabilized codes (CWS) provides tools to obtain new nonadditive quantum codes by reducing the problem to finding nonlinear classical codes. In this work, we establish some results on the kind of non-Pauli operators that can be used as observables in the decoding scheme of CWS codes and propose a procedure to obtain those observables.

Keywords

Quantum error correcting codes Codeword stabilized codes Nonadditive quantum codes Decoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC ‘96). ACM, New York, NY, USA, pp. 212–219 (1996)Google Scholar
  3. 3.
    Mosca, M.: Quantum algorithms. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7088–7118 (2009)Google Scholar
  4. 4.
    Childs A.M., van Dam W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2010)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Steane A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54, 4741–4751 (1996)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gottesman D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862–1868 (1996)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997)Google Scholar
  11. 11.
    Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nielsen M.A., Chuang I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  13. 13.
    Smolin J.A., Smith G., Wehner S.: Simple family of nonadditive quantum codes. Phys. Rev. Lett. 99, 130505 (2007)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yu S., Chen Q., Lai C.H., Oh C.H.: Nonadditive quantum error-correcting code. Phys. Rev. Lett. 101, 090501 (2008)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Li Y., Dumer I., Pryadko L.P.: Clustered error correction of codeword-stabilized quantum codes. Phys. Rev. Lett. 104, 190501 (2010)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Cross A., Smith G., Smolin J.A., Zeng B.: Codeword stabilized quantum codes. IEEE Trans. Inf. Theory 55, 433–438 (2009)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Chen X., Zeng B., Chuang I.L.: Nonbinary codeword-stabilized quantum codes. Phys. Rev. A 78, 062315 (2008)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Chuang I., Cross A., Smith G., Smolin J., Zeng B.: Codeword stabilized quantum codes: algorithm and structure. J. Math. Phys. 50(4), 042109 (2009)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Yu, S., Chen, Q., Oh, C.H.: Two Infinite Families of Nonadditive Quantum Error-Correcting Codes. ArXiv e-prints (2009)Google Scholar
  20. 20.
    Li Y., Dumer I., Grassl M., Pryadko L.P.: Structured error recovery for code-word-stabilized quantum codes. Phys. Rev. A 81, 052337 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Melo, N., Santiago, D.F.G., Portugal, R.: Decoder for Nonbinary CWS Quantum Codes. ArXiv e-prints (2012)Google Scholar
  22. 22.
    Grassl, M., Rotteler, M.: Non-additive quantum codes from goethals and preparata codes. In: Information Theory Workshop 2008 (ITW ‘08). IEEE, pp. 396–400 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Douglas F. G. Santiago
    • 1
  • Renato Portugal
    • 2
    Email author
  • Nolmar Melo
    • 2
  1. 1.Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  2. 2.Laboratório Nacional de Computação CientíficaPetrópolisBrazil

Personalised recommendations