Skip to main content
Log in

A nearly deterministic scheme for generating χ-type entangled states with weak cross-Kerr nonlinearities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a generation scheme of χ-type entangled states based on weak cross-Kerr nonlinearities. After Homodyne measurement, the individual photons can be entangled together with the help of coherent states. Assisted with classical feed-forward, the generation efficiency of the entangled state nearly approaches unity. Depending on the currently available optical elements and techniques such as beam splitters, reflection mirrors, polarization beam splitters and classical feed-forward, the present scheme is expectable to realize in experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  2. Verstraete F., Dehaene J., De Moor B., Verschelde H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65(5), 052112 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bai Y.K., Yang D., Wang Z.: Multipartite quantum correlation and entanglement in four-qubit pure states. Phys. Rev. A 76(2), 022336 (2007)

    Article  ADS  Google Scholar 

  4. Bai Y.K., Wang Z.: Multipartite entanglement in four-qubit cluster-class states. Phys. Rev. A 77(3), 032313 (2008)

    Article  ADS  Google Scholar 

  5. Lee J., Min H., Oh S.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66(5), 052318 (2002)

    Article  ADS  Google Scholar 

  6. Osterloh A., Siewert J.: Constructing N-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72(7), 012337 (2005)

    Article  ADS  Google Scholar 

  7. Wu C., Yeo Y., Kwek L., Oh C.: Quantum nonlocality of four-qubit entangled states. Phys. Rev. A 75(3), 032332 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. Yeo Y., Chua W.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  9. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Lin S., Wen Q.Y., Gao F., Zhu F.C.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78(6), 064304 (2008)

    Article  ADS  Google Scholar 

  11. Xiu X.M., Dong L., Gao Y.J., Chi F.: Quantum secure direct communication with four-particle genuine entangled state and dense coding. Commun. Theor. Phys. 52(1), 60–62 (2009)

    Article  ADS  MATH  Google Scholar 

  12. Yang Y.G., Xia J., Jia X., Zhang H.: Scheme for implementing quantum dense coding with χ-type entangled states in optical systems. Int. J. Theor. Phys. 51(6), 1917–1923 (2012)

    Article  MATH  Google Scholar 

  13. Liu, Z., Chen, H., Liu, W., Xu, J., Wang, D., Li, Z.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf. Process. (2012) doi:10.1007/s11128-012-0404-9

  14. Zukowski M., Zeilinger A., Horne M.A., Ekert A.K.: Event-ready-detectors bell experiment via enatnglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    Article  ADS  Google Scholar 

  15. Xiu X.M., Dong H.K., Dong L., Gao Y.J., Chi F.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282(12), 2457–2459 (2009)

    Article  ADS  Google Scholar 

  16. Qin S.J., Wen Q.Y., Lin S., Guo F.Z., Zhu F.C.: Cryptanalysis and improvement of a DSQC using four-particle entangled state and entanglement swapping. Opt. Commun. 282(19), 4017–4019 (2009)

    Article  ADS  Google Scholar 

  17. Gao G., Wang L.P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states. Commun. Theor. Phys. 54(3), 447–451 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Gao G.: Quantum key distribution by swapping the entanglement of χ-type state. Phys. Scripta 81(6), 65005 (2010)

    Article  Google Scholar 

  19. Zhan Y.B., Zhang Q.Y., Wang Y.W.: Schemes for splitting quantum information with four-particle genuine entangled states. Commun. Theor. Phys. 53(5), 847–851 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Wang X.W., Xia L.X., Wang Z.Y., Zhang D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  22. Dong L., Xiu X.M., Ren Y.P.: A deterministic secure quantum communication protocol using genuine four-particle entangled states with incomplete quantum teleportation. Acta Phys. Polonica B 41(6), 1203–1211 (2010)

    Google Scholar 

  23. Xiu X.M., Dong L., Gao Y.J.: Secure four-site distribution and quantum communication of χ-type entangled states. Opt. Commun. 284(7), 2065–2069 (2011)

    Article  ADS  Google Scholar 

  24. Wang X.W., Yang G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78(2), 024301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Wang X.W.: Method for generating a new class of multipartite entangled state in cavity quantum electrodynamics. Opt. Commun. 282(5), 1052–1055 (2009)

    Article  ADS  Google Scholar 

  26. Liu G.Y., Kuang L.M.: Production of genuine entangled states of four atomic qubits. J. Phys. B Atomic Molecular Opt. Phys. 42(16), 165505 (2009)

    Article  ADS  Google Scholar 

  27. Lin X.: Scheme for generating a χ-type four-atom entangled state in cavity QED. Chin. Phys. Lett. 27(4), 044207 (2010)

    Article  ADS  Google Scholar 

  28. Shi Y.L., Mei F., Yu Y.F., Feng X.L., Zhang Z.M.: Generation of a genuine four-particle entangled state of trap ions. Quantum Inf. Process. 11(1), 229–234 (2011)

    Article  Google Scholar 

  29. Wang H.F., Zhang S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79(4), 042336 (2009)

    Article  ADS  Google Scholar 

  30. Zhao L.F., Lai B.H., Mei F., Yu Y.F., Feng X.L., Zhang Z.M.: Generation of a four-particle entangled state via cross-Kerr nonlinearity. Chin. Phys. B 19(9), 094207 (2010)

    Article  ADS  Google Scholar 

  31. Nemoto K., Munro W.J.: Nearly deterministic linear optical Controlled-NOT gate. Phys. Rev. Lett. 93(25), 250502 (2004)

    Article  ADS  Google Scholar 

  32. Munro W.J., Nemoto K., Spiller T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  33. Barrett S.D., Milburn G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74(6), 060302(R) (2006)

    Article  ADS  Google Scholar 

  34. Gerry C.C., Bui T.: Quantum non-demolition measurement of photon number using weak nonlinearities. Phys. Lett. A 372(48), 7101–7104 (2008)

    Article  ADS  MATH  Google Scholar 

  35. Louis S.G.R., Munro W.J., Spiller T.P., Nemoto K.: Loss in hybrid qubit-bus couplings and gates. Phys. Rev. A 78(2), 022326 (2008)

    Article  ADS  Google Scholar 

  36. Kok P., Lee H., Dowling J.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66(6), 063814 (2002)

    Article  ADS  Google Scholar 

  37. Kok P., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007)

    Article  ADS  Google Scholar 

  38. Harris S., Hau L.: Nonlinear optics at low light levels. Phys. Rev. Lett. 82(23), 4611–4614 (1999)

    Article  ADS  Google Scholar 

  39. Braje D., Balić V., Yin G., Harris S.: Low-light-level nonlinear optics with slow light. Phys. Rev. A 68(4), 041801(R) (2003)

    Article  ADS  Google Scholar 

  40. Munro W.J., Nemoto K., Beausoleil R.G., Spiller T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71(3), 033819 (2005)

    Article  ADS  Google Scholar 

  41. Fleischhauer M., Imamoglu A., Marangos J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77(2), 633–673 (2005)

    Article  ADS  Google Scholar 

  42. Sowik K., RaczyÅski A., Zaremba J., ZieliÅska-Kaniasty S., Artoni M., La Rocca G.C.: Cross-Kerr nonlinearities in an optically dressed periodic medium. Phys. Scripta T 143, 014022 (2011)

    Article  ADS  Google Scholar 

  43. Siomau M., Kamli A.A., Moiseev S.A., Sanders B.C.: Entanglement creation with negative index metamaterials. Phys. Rev. A 85(5), 050303(R) (2012)

    Article  ADS  Google Scholar 

  44. Kippenberg T., Spillane S., Vahala K.: Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93(8), 083904 (2004)

    Article  ADS  Google Scholar 

  45. Turchette Q.A., Hood C.J., Lange W., Mabuchi H., Kimble H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  46. Grangier P., Levenson J.A., Poizat J.P.: Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998)

    Article  ADS  Google Scholar 

  47. Hofmann H.F., Kojima K., Takeuchi S., Sasaki K.: Optimized phase switching using a single-atom nonlinearity. J. Opt. B Quantum Semiclass. Opt. 5(3), 218–221 (2003)

    Article  ADS  Google Scholar 

  48. Fushman I., Englund D., Faraon A., Stoltz N., Petroff P., Vuckovic J.: Controlled phase shifts with a single quantum dot. Science 320(5877), 769–772 (2008)

    Article  ADS  Google Scholar 

  49. Sun H., Feng X.L., Gong S., Oh C.: Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling. Phys. Rev. B 79(19), 193404 (2009)

    Article  ADS  Google Scholar 

  50. Gea-Banacloche J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81(4), 043823 (2010)

    Article  ADS  Google Scholar 

  51. He B., Scherer A.: Continuous-mode effects and photon-photon phase gate performance. Phys. Rev. A 85(3), 033814 (2012)

    Article  ADS  Google Scholar 

  52. Friedler I., Petrosyan D., Fleischhauer M., Kurizki G.: Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72(4), 043803 (2005)

    Article  ADS  Google Scholar 

  53. He B., MacRae A., Han Y., Lvovsky A., Simon C.: Transverse multimode effects on the performance of photon-photon gates. Phys. Rev. A 83(2), 022312 (2011)

    Article  ADS  Google Scholar 

  54. He B., Lin Q., Simon C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83(5), 053826 (2011)

    Article  ADS  Google Scholar 

  55. Feizpour A., Xing X., Steinberg A.M.: Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107(13), 133603 (2011)

    Article  ADS  Google Scholar 

  56. Barrett S.D., Kok P., Nemoto K., Beausoleil R.G., Munro W.J., Spiller T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71(6), 060302(R) (2005)

    ADS  Google Scholar 

  57. He B., Bergou J., Ren Y.: Universal discriminator for completely unknown optical qubits. Phys. Rev. A 76(3), 032301 (2007)

    Article  ADS  Google Scholar 

  58. Sheng Y.B., Deng F.G., Zhou H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77(6), 062325 (2008)

    Article  ADS  Google Scholar 

  59. Lin Q., Li J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79(2), 022301 (2009)

    Article  ADS  Google Scholar 

  60. Lin Q., He B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80(10), 042310 (2009)

    Article  ADS  Google Scholar 

  61. He B., Ren Y., Bergou J.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79(5), 052323 (2009)

    Article  ADS  Google Scholar 

  62. Sheng Y.B., Deng F.G., Long G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

  63. He B., Ren Y.H., Bergou J.A.: Universal entangler with photon pairs in arbitrary states. J. Phys. B At. Mol. Opt. Phys. 43(2), 25502 (2010)

    Article  Google Scholar 

  64. Wang C., Zhang Y., Jin G.S.: Polarization-entanglement purification and concentration using cross-kerr nonlinearity. Quantum Inf. Comput. 11(11–12), 0988–1002 (2011)

    MathSciNet  Google Scholar 

  65. Xiong W., Ye L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28(8), 2030–2037 (2011)

    Article  ADS  Google Scholar 

  66. Xia Y., Song J., Lu P.M., Song H.S.: Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons. J. Appl. Phys. 109(10), 103111 (2011)

    Article  ADS  Google Scholar 

  67. Guo Q., Bai J., Cheng L.Y., Shao X.Q., Wang H.F., Zhang S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83(5), 054303 (2011)

    Article  ADS  Google Scholar 

  68. Deng F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84(11), 052312 (2011)

    Article  ADS  Google Scholar 

  69. Lu P.M., Xia Y., Song J.: Efficient W polarization state distribution over an arbitrary collective-noise channel with cross-Kerr nonlinearity. Opt. Commun. 284(24), 5866–5870 (2011)

    Article  ADS  Google Scholar 

  70. Wang X.W., Zhang D.Y., Tang S.Q., Xie L.J.: Multiparty hierarchical quantum-information splitting. J. Phys. B At. Mol. Opt. Phys. 44(3), 35505 (2011)

    Article  Google Scholar 

  71. Wang C., Li Y., Hao L.: Optical implementation of quantum random walks using weak cross-Kerr media. Chin. Sci. Bull. 56(20), 2088–2091 (2011)

    Article  Google Scholar 

  72. Zhu M., Yin X., Yuan G.: Quantum teleportation of an entangled 2-photon polarization state with preparing determinately two Bell states based on cross-Kerr nonlinearity. Opt. Commun. 284(13), 3483–3487 (2011)

    Article  ADS  Google Scholar 

  73. Zhu M., Zhao C., Ye L.: Highly efficient scheme for the preparation of four-photon polarization entangled state via quantum non-demolition measurement with classical feed-forward. Opt. Commun. 284(22), 5394–5397 (2011)

    Article  ADS  Google Scholar 

  74. Zhu M.Z., Zhao C.R., Ye L.: Highly efficient scheme for the implementation of optical controlled-Z gate via two-qubit polarization parity detector. Opt. Commun. 285(6), 1576–1580 (2012)

    Article  ADS  Google Scholar 

  75. Xiu X.M., Dong L., Gao Y.J., Yi X.X.: Nearly deterministic controlled-not gate with weak cross-kerr nonlinearities. Quantum Inf. Comput. 12(1–2), 0159–0170 (2012)

    MathSciNet  Google Scholar 

  76. Xia Y., Chen Q.Q., Song J., Song H.S.: Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29(5), 1029–1037 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  77. Sheng Y.B., Zhou L., Zhao S.M., Zheng B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85(1), 012307 (2012)

    Article  ADS  Google Scholar 

  78. Sheng Y.B., Zhou L., Zhao S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85(4), 042302 (2012)

    Article  ADS  Google Scholar 

  79. Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J.: Nondestructive Greenberger–Horne–Zeilinger-state analyzer. Quantum Inf. Process. (2012) doi:10.1007/s11128-012-0453-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Xiu, XM., Gao, YJ. et al. A nearly deterministic scheme for generating χ-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf Process 12, 1787–1795 (2013). https://doi.org/10.1007/s11128-012-0481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0481-9

Keywords

Navigation