Skip to main content
Log in

Partial standard quantum process tomography

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

With the general theory of standard quantum process tomography, we shall develop a scheme to decide an arbitrary matrix element of χ, which is in the Choi matrix representation, in a scalable way. Our observation is that: To decide the diagonal matrix element, one just needs a single measurement; To decide an arbitrary off-diagonal matrix element, we should carry out sixteen measurements. This result is independent of the actual dimension of the system. Compared with the known methods of partial QPT, our scheme does not require any additional resources. It can be applied for the case where a clean ancilla system is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielson M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. D’Ariano G.M., Paris M.G.A., Sacchi M.F.: Quantum tomography. Adv. Imaging Electron. Phys. 128, 205 (2003)

    Article  Google Scholar 

  3. D’Ariano G.M., LoPresti J.: Quantum state estimation. In: Paris, M.G.A., R̆eháček, J. (eds) Lecture Notes in Physics, vol. 649, Springer, Berlin (2004)

    Google Scholar 

  4. Chuang I.L., Nielson M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997)

    ADS  Google Scholar 

  5. Poyatos J.F., Cirac J.I., Zoller P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997)

    Article  ADS  Google Scholar 

  6. Leung, D.W.: Ph.D. Thesis, Standford University (2000)

  7. D’Ariano G.M., LoPresti J.: Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. Phys. Rev. Lett. 86, 4195–4198 (2001)

    Article  ADS  Google Scholar 

  8. Altepeter J.B. et al.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)

    Article  ADS  Google Scholar 

  9. Emerson J., Alicki R., K.: Scalable noise estimation with random unitary operators. J. Opt. B 7, S347–S352 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. Lévi B., López C.C., Emerson J., Cory D.G.: Efficient error characterization in quantum information processing. Phys. Rev. A 75, 022314 (2007)

    Article  ADS  Google Scholar 

  11. Dankert C., Cleve R., Emerson J., Livine E.: Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009)

    Article  ADS  Google Scholar 

  12. Emerson J., Silva M., Moussa O., Ryan C., Laforest M., Baugh J., Cory D.G., Laflamme R.: Symmetrized characterization of noisy quantum processes. Science 317, 1893–1896 (2007)

    Article  ADS  Google Scholar 

  13. Silva M., Magesan E., Kribs D.W., Emerson J.: Scalable protocol for identification of correctable codes. Phys. Rev. A 78, 012347 (2008)

    Article  ADS  Google Scholar 

  14. López C.C., Bendersky A., Paz J.P., Cory D.G.: Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies. Phys. Rev. A 81, 062113 (2010)

    Article  ADS  Google Scholar 

  15. Bendersky A., Pastawski F., Paz J.P.: Selective and efficient estimation of parameters for quantum process tomography. Phys. Rev. Lett. 100, 190403 (2008)

    Article  ADS  Google Scholar 

  16. Mohseni M., Lidar D.A.: Direct characterization of quantum dynamics. Phys. Rev. Lett. 97, 170501 (2006)

    Article  ADS  Google Scholar 

  17. Mohseni M., Lidar D.A.: Direct characterization of quantum dynamics: general theory. Phys. Rev. A 75, 062331 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Mohseni M., Rezakhani A.T., Lidar D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008)

    Article  ADS  Google Scholar 

  19. Schmiegelow C.T., Larotonda M.A., Paz J.P.: Selective and efficient quantum process tomography with single photons. Phys. Rev. Lett. 104, 123601 (2010)

    Article  ADS  Google Scholar 

  20. Anton H.: Elementary Linear Algebra, 8th edn. Wiley and Sons, New York (2000)

    Google Scholar 

  21. Myrskog S.H., Fox J.K., Mitchell M.W., Steinberg A.M.: Quantum process tomography on vibrational states of atoms in an optical lattice. Phys. Rev. A 72, 013615 (2005)

    Article  ADS  Google Scholar 

  22. Weinstein, Y.S., Havel, T.F., Emerson, J., Bouland, N., Saraceno, M., Lloyd, S., Cory, D.G.: Quantum process tomography of the quantum Fourier transform. J. Chem. Phys. 121(13), 6117–6133 (2004)

    Article  ADS  Google Scholar 

  23. Rahimi-Keshari S., Scherer A., Mann A., Rezakhani A.T., Lvovsky A.I., Sanders B.C.: Quantum process tomography with coherent states. New J. Phys. 13, 013006 (2011)

    Article  ADS  Google Scholar 

  24. Lobino M., Korystov D., Kupchak C., Figueroa E., Sanders B.C., Lvovsky A.I.: Complete characterization of quantum-optical processes. Science 322, 563–566 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Yamamoto N., Hara S., Tsumura K.: Suboptimal quantum-error-correcting procedure based on semidefinite programming. Phys. Rev. A 71, 022322 (2005)

    Article  ADS  Google Scholar 

  26. D’Ariano G.M., Lo Presti P.: Optimal nonuniversally covariant cloning. Phys. Rev. A 64, 042308 (2001)

    Article  ADS  Google Scholar 

  27. Havel T.F.: Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys. 44, 534–557 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Tyson J.: Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries. J. Phys. A 36, 10101–10114 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. D’Ariano G.M., Perinotti P., Sacchi M.F.: Informationally complete measurements on bipartite quantum systems: comparing local with global measurements. Phys. Rev. A 72, 042108 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Xu, K. Partial standard quantum process tomography. Quantum Inf Process 12, 1379–1393 (2013). https://doi.org/10.1007/s11128-012-0473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0473-9

Keywords

Navigation