Skip to main content
Log in

Comment on quantum private comparison protocols with a semi-honest third party

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As an important branch of quantum cryptography, quantum private comparison (QPC) has recently received a lot of attention. In this paper we study the security of previous QPC protocols with a semi-honest third party (TP) from the viewpoint of secure multi-party computation and show that the assumption of a semi-honest TP is unreasonable. Without the unreasonable assumption of a semi-honest TP, one can easily find that the QPC protocol (Tseng et al. in Quantum Inf Process, 2011, doi:10.1007/s11128-011-0251-0) has an obvious security flaw. Some suggestions about the design of QPC protocols are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  2. Ekert A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Lin S., Wen Q.Y., Gao F., Zhu F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  7. Wang T.-Y., Wen Q.-Y., Zhu F.-C.: Multiparty controlled quantum secure direct communication with phase encryption. Int. J. Quant. Inform. 9(2), 801–807 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang Y.-G., Wen Q.-Y.: Threshold quantum secure direct communication without entanglement. Sci. Chin. Ser. G Phys. Astron. 51(2), 176–183 (2008)

    Article  ADS  MATH  Google Scholar 

  9. Cao W.-F., Yang Y.-G., Wen Q.-Y.: Quantum secure direct communication with cluster states. Sci. Chin. Ser. G Phys. Astron. 53(7), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  10. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  12. Guo G.P., Guo G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Lin S., Wen Q.Y., Qin S.J.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  15. Wang T.Y., Wen Q.Y., Gao F., Lin S., Zhu F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65–68 (2008)

    Article  ADS  MATH  Google Scholar 

  16. Li B.-K., Yang Y.-G., Wen Q.-Y.: Threshold quantum secret sharing of secure direct communication. Chin. Phys. Lett. 26(1), 010302 (2009)

    Article  ADS  Google Scholar 

  17. Yang Y.-G., Wang Y., Chai H.-P., Teng Y.-W., Zhang H.: Member expansion in quantum (t,n) threshold secret sharing schemes. Opt. Commun. 284(13), 3479–3482 (2011)

    Article  ADS  Google Scholar 

  18. Yang Y.-G., Wang Y., Teng Y.-W., Wen Q.-Y.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011)

    Article  ADS  Google Scholar 

  19. Yang Y.-G., Chai H.-P., Wang Y., Teng Y.-W., Wen Q.-Y.: Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci. Chin. Ser. G Phys. Astron. 54(9), 1619–1624 (2011)

    Article  ADS  Google Scholar 

  20. Yang Y.-G., Teng Y.-W., Chai H.-P., Wen Q.-Y.: Verifiable quantum (k,n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang Y.-G., Teng Y.-W., Chai H.-P., Wen Q.-Y.: Fault tolerant quantum secret sharing against collective noise. Phys. Scr. 83(2), 025003 (2011)

    Article  ADS  Google Scholar 

  22. Yang, Y.-G., Wen, Q.-Y.: Comment on: “Efficient high-capacity quantum secret sharing with two-photon entanglement”. Phys. Lett. A 373(3), 396–398 [Phys. Lett. A 372, 1957 (2008)] (2009)

  23. Yang Y.-G., Wen Q.-Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(6), 1249–1254 (2009)

    Article  MathSciNet  Google Scholar 

  24. Sun Y., Wen Q.Y., Zhu F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun. 283, 181–183 (2010)

    Article  ADS  Google Scholar 

  25. Lin S., Wen Q.Y., Gao F., Qin S.J.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553–4554 (2008)

    Article  ADS  Google Scholar 

  26. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: A special attack on the multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 5472–5474 (2008)

    Article  ADS  Google Scholar 

  27. Sun Y., Wen Q.Y., Gao F.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  28. Dušek M., Haderka O., Hendrych M.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)

    Article  ADS  Google Scholar 

  29. Curty M., Santos D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  ADS  Google Scholar 

  30. Ljunggren D., Bourennane M., Karlsson A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  ADS  Google Scholar 

  31. Yang Y.-G., Zhou Z., Teng Y.-W., Wen Q.-Y.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)

    Article  ADS  Google Scholar 

  32. Yang Y.-G., Wen Q.-Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)

    Article  ADS  Google Scholar 

  33. Yang Y.-G., Wang Y., Wen Q.-Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. (Beijing, China) 54(1), 84–88 (2010)

    Article  ADS  MATH  Google Scholar 

  34. Yang Y.-G., Wen Q.-Y.: Economical multiparty simultaneous quantum identity authentication based on Greenberger-Horne-Zeilinger states. Chin. Phys. B 18(8), 3233–3236 (2009)

    Article  ADS  Google Scholar 

  35. Yang Y.-G., Teng Y.W., Chai H.P., Wen Q.-Y.: Verifiable quantum (k,n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, Y.-G., Jia, X., Wang, H. Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. (2012). doi:10.1007/s11128-011-0323-1

  37. Abadi M., Feigenbaum J.: A simple protocol for secure circuit evaluation. LNCS 294, 264–272 (1987)

    Google Scholar 

  38. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), p. 160. Washington, DC, USA (1982)

  39. Boudot F., Schoenmakers B., Traor’e J.: A fair and efficient solution to the socialist millionaires’ problem. Discr. Appl. Math. (Special Issue on Coding and Cryptology) 111(1–2), 23–36 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Lo H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  41. Yang Y.G., Wen Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  42. Yang Y.G., Cao W.F., Wen Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  43. Chen X.B., Xu G., Niu X.X., Wen Q.Y., Yang Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  44. Tseng H.-Y., Lin J., Hwang T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu W., Wang Y.B., Tao J.Z.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 1561–1565 (2011)

    Article  ADS  Google Scholar 

  46. Liu W., Wang Y.B., Tao J.Z., Cao Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51, 69–77 (2012)

    Article  MATH  Google Scholar 

  47. Liu W., Wang Y.B., Jiang Z.T., Cao Y.Z., Cui W.: New quantum private comparison protocol using χ-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jia H.Y., Wen Q.Y., Li Y.B., Gao F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jia H.Y., Wen Q.Y., Song T.T., Gao F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  50. Gao F., Guo F.Z., Wen Q.Y., Zhu F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  51. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 [Phys. Rev. A 61, 052312 (2000)] (2001)

    Google Scholar 

  52. Gao F., Qin S., Wen Q., Zhu F.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Gao F., Wen Q., Zhu F.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189–3193 (2008)

    Article  ADS  Google Scholar 

  54. Gao F., Qin S., Guo F., Wen Q.: Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols. IEEE J. Quantum Electron. 47, 630–635 (2011)

    Article  ADS  Google Scholar 

  55. Hao L., Li J.L., Long G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491–495 (2010)

    Article  ADS  Google Scholar 

  56. Qin S., Gao F., Wen Q., Zhu F.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  57. Wójcik A.: Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  58. Wójcik A.: Comment on “Quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  59. Cai Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  60. Gao F., Guo F.Z., Wen Q.Y., Zhu F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  61. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 360, 748–750 [Phys. Lett. A 350 (2006) 174] (2007)

  62. Gao F., Lin S., Wen Q.Y., Zhu F.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561–1563 (2008)

    Article  ADS  Google Scholar 

  63. Gao F., Qin S., Wen Q., Zhu F.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  64. Yang Y.-G., Naseri M., Wen Q.-Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)

    Article  ADS  Google Scholar 

  65. Yang Y.-G., Teng Y.-W., Chai H.-P., Wen Q.-Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. 10(3), 317–323 (2011) [Quantum Inf. Process. 8, 347 (2009)]

    Article  MathSciNet  MATH  Google Scholar 

  66. Gisin N., Fasel S., Kraus B., Zbinden H., Ribordy G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  67. Deng F.G., Li X.H., Zhou H.Y., Zhang Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  68. Yang Y.-G., Chai H.-P., Teng Y.-W., Wen Q.-Y.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50, 395–400 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Gao F., Qin S.-J., Guo F.Z., Wen Q.-Y.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin. Phys. Lett. 28, 020303 (2011)

    Article  ADS  Google Scholar 

  70. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 643–652. ACM, New York (2002)

  71. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: Proceedings of 47th Annual IEEE Symposium on the Foundations of Computer Science, pp. 249–260. IEEE, Los Alamitos (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YG., Xia, J., Jia, X. et al. Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf Process 12, 877–885 (2013). https://doi.org/10.1007/s11128-012-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0433-4

Keywords

Navigation