Skip to main content
Log in

Topological phenomena in quantum walks: elementary introduction to the physics of topological phases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Discrete quantum walks are dynamical protocols for controlling a single quantum particle. Despite of its simplicity, quantum walks display rich topological phenomena and provide one of the simplest systems to study and understand topological phases. In this article, we review the physics of discrete quantum walks in one and two dimensions in light of topological phenomena and provide elementary explanations of topological phases and their physical consequence, namely the existence of boundary states. We demonstrate that quantum walks are versatile systems that simulate many topological phases whose classifications are known for static Hamiltonians. Furthermore, topological phenomena appearing in quantum walks go beyond what has been known in static systems; there are phenomena unique to quantum walks, being an example of periodically driven systems, that do not exist in static systems. Thus the quantum walks not only provide a powerful tool as a quantum simulator for static topological phases but also give unique opportunity to study topological phenomena in driven systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  2. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307 (2003). http://www.tandfonline.com/doi/pdf/10.1080/00107151031000110776

    Google Scholar 

  3. Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  4. Kitagawa T., Rudner M.S., Berg E., Demler E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  5. Kitagawa, T., et al.: Observation of topologically protected bound states in a one dimensional photonic system. arXiv/1105.5334 (2011)

  6. Zähringer F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  Google Scholar 

  7. Karski, M., et al.: Quantum walk in position space with single optically trapped atoms. Science 325, 174 (2009). http://www.sciencemag.org/content/325/5937/174.full.pdf

    Google Scholar 

  8. Schreiber A., et al.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

    Article  ADS  Google Scholar 

  9. Broome M.A. et al.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    Article  ADS  Google Scholar 

  10. Biane, P., et al.: Quantum walks. In: Quantum Potential Theory, Lecture Notes in Mathematics, vol. 1954, pp. 309–452. Springer, Berlin, Heidelberg (2008)

  11. Grimmett G., Janson S., Scudo P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  12. Ryu S., Hatsugai Y.: Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)

    Article  ADS  Google Scholar 

  13. Oka T., Konno N., Arita R., Aoki H.: Breakdown of an electric-field driven system: a mapping to a quantum walk. Phys. Rev. Lett. 94, 100602 (2005)

    Article  ADS  Google Scholar 

  14. Rudner M.S., Levitov L.S.: Topological transition in a non-hermitian quantum walk. Phys. Rev. Lett. 102, 065703 (2009)

    Article  ADS  Google Scholar 

  15. von Klitzing K., Dorda G., Pepper M.: New method for high-accuracy determination of the finestructure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  16. MacDonald, A.H.: Introduction to the physics of the quantum hall regime: quantized hall conductance in a two-dimensional periodic potential. eprint arXiv:cond-mat/9410047 (1994)

  17. Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  18. Halperin B.I.: Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hasan M.Z., Kane C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  20. Qi X.-L., Zhang S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  21. Su W.P., Schrieffer J.R., Heeger A.J.: Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  22. Jackiw R., Rebbi C.: Solitons with fermion number. Phys. Rev. D 13, 3398 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  23. Jackiw R., Schrieffer J.: Solitons with fermion number 12 in condensed matter and relativistic field theories. Nuclear Physics B 190, 253 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  24. Kane C.L., Mele E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  25. Bernevig, B.A., Hughes, T.L., Zhang, S.-C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006). http://www.sciencemag.org/content/314/5806/1757.full.pdf

  26. Konig, M., et al.: Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766 (2007). http://www.sciencemag.org/content/318/5851/766.full.pdf

  27. Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  28. Chen, Y.L., et al.: Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009). http://www.sciencemag.org/content/325/5937/178.full.pdf

  29. Xia Y. et al.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009)

    Article  Google Scholar 

  30. Schnyder A.P., Ryu S., Furusaki A., Ludwig A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  31. Qi X.-L., Hughes T.L., Zhang S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008)

    Article  ADS  Google Scholar 

  32. Kitaev, A.: Periodic table for topological insulators and superconductors. In: Lebedev V., Feigel’Man, M. (eds.) American Institute of Physics Conference Series, vol. 1134, pp. 22–30 (2009)

  33. Wang Z., Chong Y., Joannopoulos J.D., Soljacic M.: Observation of unidirectional backscattering–immune topological electromagnetic states. Nature 461, 772 (2009)

    Article  ADS  Google Scholar 

  34. Kitagawa T., Berg E., Rudner M., Demler E.: Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010)

    Article  ADS  Google Scholar 

  35. Jiang L. et al.: Majorana Fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, 220402 (2011)

    Article  ADS  Google Scholar 

  36. Sørensen A.S., Demler E., Lukin M.D.: Fractional quantum hall states of atoms in optical lattices. Phys. Rev. Lett. 94, 086803 (2005)

    Article  ADS  Google Scholar 

  37. Zhu S.-L., Fu H., Wu C.-J., Zhang S.-C., Duan L.-M.: Spin hall effects for cold atoms in a light-induced gauge potential. Phys. Rev. Lett. 97, 240401 (2006)

    Article  ADS  Google Scholar 

  38. Jaksch D., Zoller P.: Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. N. J. Phys. 5, 56 (2003)

    Article  Google Scholar 

  39. Osterloh K., Baig M., Santos L., Zoller P., Lewenstein M.: Cold atoms in non-abelian gauge potentials: from the hofstadter “Moth” to lattice gauge theory. Phys. Rev. Lett. 95, 010403 (2005)

    Article  ADS  Google Scholar 

  40. Kitagawa, T.: Wolfram Demonstration: topological phases with quantum walks. http://demonstrations.wolfram.com/TopologicalPhasesWithQuantumWalks/

  41. Thouless D.J.: Quantization of particle transport. Phys. Rev. B 27, 6083 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  42. Obuse H., Kawakami N.: Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 84, 195139 (2011)

    Article  ADS  Google Scholar 

  43. Kitagawa, T., Oka, T., Demler, E.: Photo control of transport properties in disorderd wire; average conductance, conductance statistics, and time-reversal symmetry. WolframDemonstration: topological phases with quantum walks. ArXiv e-prints (2012). 1201.0521

  44. Moore J.E., Ran Y., Wen X.-G.: Topological surface states in three-dimensional magnetic insulators. Phys. Rev. Lett. 101, 186805 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, T. Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf Process 11, 1107–1148 (2012). https://doi.org/10.1007/s11128-012-0425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0425-4

Keywords

Navigation