Skip to main content
Log in

Entanglement dynamics of two-qubit pure state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We show that the entanglement dynamics for the pure state of a closed two-qubit system is part of a 10-dimensional complex linear differential equation defined on a supersphere, and the coefficients therein are completely determined by the system Hamiltonian. We apply the result to two physical examples of Josephson junction qubits and exchange Hamiltonians, deriving analytic solutions for the time evolution of entanglement. The Hamiltonian coefficients determine whether the entanglement is periodic. These results allow of investigating how to generate and manipulate entanglements efficiently, which are required by both quantum computation and quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  2. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Mintert F., Carvalho A., Kus M., Buchleitner A.: Measures and dynamics of entangled states. Phys. Rep. 415(4), 207–259 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140–404 (2004)

    Google Scholar 

  5. Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140,403 (2006)

    Google Scholar 

  6. Yu T., Eberly J.H.: Sudden death of entanglement. Science 323(5914), 598–601 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Konrad T., De Melo F., Tiersch M., Kasztelan C., Aragao A., Buchleitner A.: Evolution equation for quantum entanglement. Nat. Phys. 4(2), 99–102 (2008)

    Article  Google Scholar 

  8. An J.H., Wang S.J., Luo H.G.: Entanglement dynamics of qubits in a common environment. Physica A 382, 753–764 (2007)

    Article  ADS  Google Scholar 

  9. Cui H.T., Li K., Yi X.X.: A study on the suddent death of entanglement. Phys. Lett. A 365, 44–48 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Życzkowski K, Z K., Horodecki P., Horodecki M., Horodecki R.: Dynamics of quantum entanglement. Phys. Rev. A 65(1), 012–101 (2001)

    Google Scholar 

  11. Dodd P.J., Halliwell J.J.: Disentanglement and decoherence by open system dynamics. Phys. Rev. A 69(5), 052–105 (2004)

    MathSciNet  Google Scholar 

  12. Dür W., Briegel H.J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92(18), 180–403 (2004)

    Article  Google Scholar 

  13. Santos M.F., Milman P., Davidovich L., Zagury N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73(4), 040–305 (2006)

    Article  Google Scholar 

  14. Carvalho A.R.R., Busse M., Brodier O., Viviescas C., Buchleitner A.: Optimal dynamical characterization of entanglement. Phys. Rev. Lett. 98(19), 190–501 (2007)

    Article  Google Scholar 

  15. Roos C.: Dynamics of entanglement. Nat. Phys. 4(2), 97–98 (2008)

    Article  Google Scholar 

  16. Roszak K., Machnikowski P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A 73, 022–313 (2006)

    Google Scholar 

  17. Ficek Z., Tanaś R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024–304 (2006)

    Article  Google Scholar 

  18. Liu R.F., Chen C.C.: Role of the bell singlet state in the suppression of disentanglement. Phys. Rev. A 74, 024–102 (2006)

    Google Scholar 

  19. Zhang J., Vala J., Sastry S., Whaley K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042–313 (2003)

    MathSciNet  Google Scholar 

  20. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  21. Makhlin Y.: Nonlocal properties of two-qubit gates and mixed states and the optimization of quantum computations. Quantum Inf. Process. 1(4), 243–252 (2002)

    Article  MathSciNet  Google Scholar 

  22. Makhlin Y., Schön G., Shnirman A.: Josephson-junction qubits with controlled couplings. Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

This work is sponsored by Innovation Program of Shanghai Municipal Education Commission under Grant No. 11ZZ20, Shanghai Pujiang Program under Grant No. 11PJ1405800, NSFC under Grant No. 61174086, and State Key Lab of Advanced Optical Communication Systems and Networks, SJTU, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J. Entanglement dynamics of two-qubit pure state. Quantum Inf Process 12, 1627–1636 (2013). https://doi.org/10.1007/s11128-012-0411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0411-x

Keywords

Navigation