Skip to main content
Log in

Dynamical localization for d-dimensional random quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 22 June 2012

Abstract

We consider a d-dimensional random quantum walk with site-dependent random coin operators. The corresponding transition coefficients are characterized by deterministic amplitudes times independent identically distributed site-dependent random phases. When the deterministic transition amplitudes are close enough to those of a quantum walk which forbids propagation, we prove that dynamical localization holds for almost all random phases. This instance of Anderson localization implies that all quantum mechanical moments of the position operator are uniformly bounded in time and that spectral localization holds, almost surely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Ahlbrecht A., Scholz V.B., Werner A.H.: Disordered quantum walks in one lattice dimension. J. Math. Phys. 52, 102201 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ahlbrecht A., Vogts H., Werner A.H., Werner R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52, 042201 (2011)

    Article  ADS  Google Scholar 

  4. Aizenman M., Elgart A., Naboko S., Schenker J., Stolz G.: Moment analysis for localization in random Schrödinger operators. Invent. Math. 163, 343–413 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Asch J., Bourget O., Joye A.: Localization Properties of the Chalker-Coddington Model. Ann. H. Poincaré 11, 1341–1373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Asch, J., Bourget, O., Joye, A.: Dynamical Localization of the Chalker-Coddington Model far from Transition, J. Stat. Phys. (2012) doi:10.1007/s10955-012-0477-y

  8. Attal, S., Petruccione, F., Sabot, C., Sinayski, I.: Open Quantum Random Walks, hal-00581553 (2011)

  9. Blatter G., Browne D.: Zener tunneling and localization in small conducting rings. Phys. Rev. B 37, 3856 (1988)

    Article  ADS  Google Scholar 

  10. Bourget O., Howland J.S., Joye A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, 191–227 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Cantero M.J., Grünbaum L., Morales F.A, Velà àzquez L.: One-dimensional quantum walks with one defect. Rev. Math. Phys. 24, 1250002 (2012)

    Article  MathSciNet  Google Scholar 

  12. Chalker J.T., Coddington P.D.: Percolation, quantum tunneling and the integer Hall effect. J. Phys. C 21, 2665–2679 (1988)

    Article  ADS  Google Scholar 

  13. de Oliveira C.R., Simsen M.S.: A Floquet operator with purely point spectrum and energy instability. Ann. H. Poincaré 7, 1255–1277 (2008)

    Google Scholar 

  14. Hamza, E., Joye, A.: Correlated Markov Quantum Walks, arxiv 1110.4862. Ann. H. Poincaré (to appear)

  15. Hamza E., Joye A., Stolz G.: Localization for random unitary operators. Lett. Math. Phys. 75, 255–272 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hamza E., Joye A., Stolz G.: Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12, 381–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Inui N., Konishi Y., Konno N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)

    Article  ADS  Google Scholar 

  18. Joye A.: Fractional moment estimates for random unitary operators. Lett. Math. Phys. 72(1), 51–64 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Joye A.: Random unitary models and their localization properties, in entropy & the quantum II. Contempor. Math. 552, 117–134 (2011)

    Article  MathSciNet  Google Scholar 

  20. Joye A.: Random time-dependent quantum walks. Commun. Math. Phys. 307, 65–100 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Joye A., Merkli M.: Dynamical localization of quantum walks in random environments. J. Stat. Phys. 140, 1025–1053 (2010)

    Article  MathSciNet  Google Scholar 

  22. Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1982)

    Book  MATH  Google Scholar 

  23. Karski M., Förster L., Chioi J.M., Streffen A., Alt W., Meschede D., Widera A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)

    Article  ADS  Google Scholar 

  24. Keating J.P., Linden N., Matthews J.C.F., Winter A.: Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 76, 012315 (2007)

    Article  ADS  Google Scholar 

  25. Kempe J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  26. Kirsch, W.: An invitation to random Schrödinger operators (with appendix by F. Klopp) iIn: Random Schrödinger Operators. M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau, Panoramas et Synthéses 25, pp. 1–119 (2008)

  27. Konno N.: One-dimensional discrete-time quantum walks on random environments. Quantum Inf. Process 8, 387399 (2009)

    Article  MathSciNet  Google Scholar 

  28. Konno, N.: Quantum walks, in “Quantum Potential Theory”, Franz, Schürmann Edts. Lecture Notes in Mathematics 1954, pp. 309–452 (2009)

  29. Konno, N., Luczac, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension, arxiv 1107.4462 (2011)

  30. Kosk J., Buzek V., Hillery M.: Quantum walks with random phase shifts. Phys. Rev. A 74, 022310 (2006)

    Article  ADS  Google Scholar 

  31. Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks, 20th SODA, 86–95 (2009)

  32. Meyer D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551574 (1996)

    Article  Google Scholar 

  33. Ryu, J.-W., Hur, G., Kim, S. W.: Quantum localization in open chaotic systems, Phys. Rev. E, 037201 (2008)

  34. Santha M.: Quantum walk based search algorithms, 5th TAMC. LNCS 4978, 31–46 (2008)

    MathSciNet  Google Scholar 

  35. Shapira D., Biham O., Bracken A.J., Hackett M.: One dimensional quantum walk with unitary noise. Phys. Rev. A 68, 062315 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  36. Shikano S., Katsura H.: Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. Simon B.: Aizenman’s theorem for orthogonal polynomials on the unit circle. Const. Approx. 23, 229–240 (2006)

    Article  MATH  Google Scholar 

  38. Stollmann P.: Caught by Disorder, Bound States in Random Media, Progress in Mathematical Physics, Vol. 20. Birkhäuser, Boston (2001)

    Google Scholar 

  39. Yin Y., Katsanos D.E., Evangelou S.N.: Quantum walks on a random environment. Phys. Rev. A 77, 022302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. Zähringer F., Kirchmair G., Gerritsma R., Solano E., Blatt R., Roos C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Joye.

Additional information

Partially supported by the Agence Nationale de la Recherche, grant ANR-09-BLAN-0098-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joye, A. Dynamical localization for d-dimensional random quantum walks. Quantum Inf Process 11, 1251–1269 (2012). https://doi.org/10.1007/s11128-012-0406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0406-7

Keywords

Navigation