Skip to main content
Log in

Multipartite electronic entanglement purification using quantum-dot spin and microcavity system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents an entanglement purification protocol of multipartite electronic spin entangled state resorting to quantum-dot (QD) spin and micro cavity coupled system. The QD and microcavity coupling system is used to construct parity check detectors which provides a novel experimental platform of quantum information processing with photon and solid qubit. In this proposed protocol, the mixed multi-electron entangled state ensemble can be purified efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bennett C.H., Brassard G., Mermin N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bouwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  4. Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  5. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Bennett C.H., Brassard G., Popescu S., Schumacher B., Smolin J.A., Wootters W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  7. Deutsch D., Ekert A., Jozsa R., Macchiavello C., Popescu S., Sanpera A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  8. Pan J.W., Simon C., Zellinger A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  9. Pan J.W., Gasparonl S., Ursin R., Weihs G., Zellinger A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)

    Article  ADS  Google Scholar 

  10. Simon C., Pan J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  11. Murao M., Plenio M.B., Popescu S., Vedral V., Knight P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A 57, R4075 (1998)

    Article  ADS  Google Scholar 

  12. Horodecki M., Horodecki P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  13. Sheng Y.B., Deng F.G., Zhou H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  14. Xiao L., Wang C., Zhang W., Huang Y.D., Peng J.D., Long G.L.: Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs. Phys. Rev. A 77, 042315 (2008)

    Article  ADS  Google Scholar 

  15. Sheng Y.B., Deng F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  16. Beenakker C.W.J., Divincenzo D.P., Emary C., Kindermann M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  17. Feng X.L., Kwek L.C., Oh L.C.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71, 064301 (2005)

    Article  ADS  Google Scholar 

  18. Sheng Y.B., Deng Y.B., Long G.L.: Multipartite electronic entanglement purification with charge detection. Phys. Lett. A 375, 396 (2011)

    Article  ADS  MATH  Google Scholar 

  19. Waks E., Vuckovic J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  Google Scholar 

  20. Bonato C., Haupt F., Oemrawsingh S.S.R. et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  21. Hu C.Y., Munro W.J., Rarity J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  22. Hu C.Y., Munro C.Y., O’Brien J.L., Rarity J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    Article  ADS  Google Scholar 

  23. Wang C., Zhang Y., Jin G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  24. Young A.B., Oulton R., Hu C.Y., Thijssen A.C.T., Schneider C., Reitzenstein S., Kamp M., Höfling S., Worschech L., Forchel A., Rarity J.G.: Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A 84, 011803(R) (2011)

    Article  ADS  Google Scholar 

  25. Auffè-Garnier A., Simon C., Gérad J.M., Poizat J.P.: Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007)

    Article  ADS  Google Scholar 

  26. Hu C.Y., Rarity J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  27. Reitzenstein S., Hofmann C., Gorbunov A., Strau M., Kwon S.H., Schneider C., Löffler A., Höfling S., Kamp M., Forchel A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150,000. Appl. Phys. Lett. 90, 251109 (2007)

    Article  ADS  Google Scholar 

  28. Clark S.M., Fu K.-M.C., Zhang Q., Ladd T.D., Stanley C., Yamamoto Y.: Ultrafast optical spin echo for electron spins in semiconductors. Phys. Rev. Lett. 102, 247601 (2009)

    Article  ADS  Google Scholar 

  29. Press D., De Greve K., McMahon P.L., Ladd T.D., Friess B., Schneider C., Kamp M., Hofling S., Forchel A., Yamamoto Y.: Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367 (2010)

    Article  ADS  Google Scholar 

  30. Borri P., Langbein W., Schneider S., Woggon U., Sellin R.L., Ouyang D., Bimberg D.: Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)

    Article  ADS  Google Scholar 

  31. Birkedal D., Leosson K., Hvam J.M.: Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Zhang, R., Zhang, Y. et al. Multipartite electronic entanglement purification using quantum-dot spin and microcavity system. Quantum Inf Process 12, 525–536 (2013). https://doi.org/10.1007/s11128-012-0397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0397-4

Keywords

Navigation