Abstract
We present an investigation of many-particle quantum walks in systems of non-interacting distinguishable particles. Along with a redistribution of the many-particle density profile we show that the collective evolution of the many-particle system resembles the single-particle quantum walk evolution when the number of steps is greater than the number of particles in the system. For non-uniform initial states we show that the quantum walks can be effectively used to separate the basis states of the particle in position space and grouping like state together. We also discuss a two-particle quantum walk on a two-dimensional lattice and demonstrate an evolution leading to the localization of both particles at the center of the lattice. Finally we discuss the outcome of a quantum walk of two indistinguishable particles interacting at some point during the evolution.
This is a preview of subscription content, access via your institution.
References
Riazanov, G.V.: The Feynman path integral for the Dirae equation, Zh. Eksp. Teor. Fiz. 33, 1437 (1958), [Soviet Phys. JETP 6, 1107–1113 (1958)]
Feynman R.P., Hibbs A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)
Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)
Meyer D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)
Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceeding of the 33rd ACM Symposium on Theory of Computing, p. 60. ACM Press, New York (2001)
Nayak, A., Vishwanath, A.: Quantum Walk on the Line, DIMACS Technical Report, No. 2000-43 (2001); arXiv:quant-ph/0010117
Ambainis A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1(4), 507–518 (2003)
Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th ACM Symposium on Theory of Computing, p. 59. ACM Press, New York (2003)
Shenvi N., Kempe J., Birgitta Whaley K.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)
Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1099-1108. AMC Press, New York (2005)
Chandrashekar C.M., Laflamme R.: Quantum phase transition using quantum walks in an optical lattice. Phys. Rev. A 78, 022314 (2008)
Oka T., Konno N., Arita R., Aoki H.: Breakdown of an electric-field driven system: a mapping to a quantum walk. Phys. Rev. Lett. 94, 100602 (2005)
Engel G.S. et al.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)
Mohseni M., Rebentrost P., Lloyd S., Aspuru-Guzik A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008)
Chandrashekar, C.M., Goyal, S.K., Banerjee, S.: Entanglement generation in spatially separated systems using quantum walk arXiv:1005.3785 (2010)
Kitagawa T., Rudner M.S., Berg E., Demler E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)
Du J., Li H., Xu X., Shi M., Wu J., Zhou X., Han R.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67, 042316 (2003)
Ryan C.A., Laforest M., Boileau J.C., Laflamme R.: Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72, 062317 (2005)
Perets H.B., Lahini Y., Pozzi F., Sorel M., Morandotti R., Silberberg Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)
Schmitz H., Matjeschk R., Schneider Ch., Glueckert J., Enderlein M., Huber T., Schaetz T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)
Zahringer F., Kirchmair G., Gerritsma R., Solano E., Blatt R., Roos C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)
Karski K., Foster L., Choi J.-M., Steffen A., Alt W., Meschede D., Widera A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)
Schreiber A., Cassemiro K.N., Potocek V., Gabris A., Mosley P., Andersson E., Jex I., Silberhorn Ch.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 05502 (2010)
Broome M.A., Fedrizzi A., Lanyon B.P., Kassal I., Aspuru-Guzik A., White A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)
Peruzzo A., Lobino M., Matthews J.C.F., Matsuda N., Politi A., Poulios K., Zhou X.-Q., Lahini Y., Ismail N., Wrhoff K., Bromberg Y., Silberberg Y., Thompson M.G., OBrien J.L.: Quantum walks of correlated photons. Science 329, 1500–1503 (2010)
Owens J.O., Broome M.A., Biggerstaff D.N., Goggin M.E., Fedrizzi A., Linjordet T., Ams M., Marshall G.D., Twamley J., Withford M.J., White A.G.: Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)
Konno N.: Quantum random walks in one dimension. Quantum Inf. Process. 1(5), 345–354 (2002)
Chandrashekar C.M., Srikanth R., Laflamme R.: Optimizing the discrete time quantum walk using a SU(2) coin. Phys. Rev. A 77, 032326 (2008)
Mayer K., Tichy M.C., Mintert F., Konrad T., Buchleitner A.: Counting statistics of many-particle quantum walks. Phys. Rev. A 83, 062307 (2011)
Rohde P.P., Schreiber A., Stefanak M., Jex I., Silberhorn C.: Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation. New J. Phys. 13, 013001 (2011)
Goyal S.K., Chandrashekar C.M.: Spatial entanglement using a quantum walk on a many-body system. J. Phys. A: Math. Theor. 43, 235303 (2010)
Mandel O., Greiner M., Widera A., Rom T., Hänsch T.W., Bloch I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)
Duan L.-M., Demler E., Lukin M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)
Jaksch D.: Optical lattices, ultracold atoms and quantum information processing. Contemp. Phys. 45(5), 367–381 (2004)
Stefanak M., Kiss T., Jex I., Mohring B.: The meeting problem in the quantum walk. J. Phys. A: Math. Gen. 39, 14965–14983 (2006)
Knight P.L., Roldan E., Sipe J.E.: Quantum walk on the line as an interference phenomenon. Phys. Rev. A 68, 020301(R) (2003)
Omar Y., Paunkovic N., Sheridan L., Bose S.: Quantum walk on a line with two entangled particles. Phys. Rev. A 74, 042304 (2006)
Gamble J.K., Friesen M., Zhou D., Joynt R., Coppersmith S.N.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81, 052313 (2010)
Stefanak M., Barnett S.M., Kollar B., Kiss T., Jex I.: Directional correlations in quantum walks with two particles. New J. Phys. 13, 033029 (2011)
Berry S.D., Wang J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)
Romanelli A.: Distribution of chirality in the quantum walk: Markov process and entanglement. Phys. Rev. A 81, 062349 (2011)
Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Bound Molecules in an Interacting Quantum Walk, arXiv:1105.1051v1 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chandrashekar, C.M., Busch, T. Quantum walk on distinguishable non-interacting many-particles and indistinguishable two-particle. Quantum Inf Process 11, 1287–1299 (2012). https://doi.org/10.1007/s11128-012-0387-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-012-0387-6
Keywords
- Distinguishable many particles
- Indistinguishable two-particles
- Quantum walks
- Discrete-time quantum walk