Quantum Information Processing

, Volume 12, Issue 3, pp 1439–1467 | Cite as

Speeding up the spatial adiabatic passage of matter waves in optical microtraps by optimal control

  • Antonio Negretti
  • Albert Benseny
  • Jordi Mompart
  • Tommaso Calarco


We numerically investigate the performance of atomic transport in optical microtraps via the so called spatial adiabatic passage technique. Our analysis is carried out by means of optimal control methods, which enable us to determine suitable transport control pulses. We investigate the ultimate limits of the optimal control in speeding up the transport process in a triple well configuration for both a single atomic wave packet and a Bose-Einstein condensate within a regime of experimental parameters achievable with current optical technology.


Quantum optimal control Atomic, molecular, and optical physics Numerical optimization methods, control of matter waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloch I., Hänsch T.W., Esslinger T.: Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Gustavson T.L., Chikkatur A.P., Leanhardt A.E., Görlitz A., Gupta S., Pritchard D.E., Ketterle W.: Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett. 88, 020401 (2001)CrossRefGoogle Scholar
  3. 3.
    Hänsel T.W.H.W., Hommelhoff P., Reichel J.: Bose-Einstein condensation on a microelectronic chip. Nature 413, 498 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Reichel, J., Vuletic, V. (eds): Atom Chips. Wiley-VCH Verlag, Weinheim (2011)Google Scholar
  5. 5.
    Lundblad N., Obrecht J.M., Spielman I.B., Porto J.V.: Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nat. Phys. 5, 575 (2009)CrossRefGoogle Scholar
  6. 6.
    Bakr W.S., Peng A., Tai M.E., Ma R., Simon J., Gillen J.I., Flling S., Pollet L., Greiner M.: Probing the Superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Weitenberg C., Endres M., Sherson J.F., Cheneau M., Schauß P., Fukuhara T., Bloch I., Kuhr S.: Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Sherson J.F., Weitenberg C., Endres M.C.M., Bloch I., Kuhr S.: Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Bakr W.S., Gillen J.I., Peng A., Fölling S., Greiner M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    DiVincenzo D.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    Negretti A., Treutlein P., Calarco T.: Quantum computing implementations with neutral particles. Quantum Inf. Process. 10, 721 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ladd T.D., Jelezko F., Laflamme R., Nakamura Y., Monroe C., OBrien J.L.: Quantum computers. Nature 464, 45 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Cirac J.I., Zoller P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Mølmer K., Sørensen A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Gulde S., Riebe M., Lancaster G.P.T., Becher C., Eschner J., Häffner H., Schmidt-Kaler F., Chuang I.L., Blatt R.: Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Schmidt-Kaler F., Häffner H., Riebe M., Gulde S., Lancaster G.P.T., Deuschle T., Becher C., Roos C.F., Eschner J., Blatt R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Sackett C.A., Kielpinski D., King B.E., Langer C., Meyer V., Myatt C.J., Rowe M., Turchette Q.A., Itano W.M., Wineland D.J., Monroe C.: Experimental entanglement of four particles. Nature 404, 256 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Häffner H., Hänsel W., Roos C.F., Benhelm J., al kar D.C., Chwalla M., Körber T., Rapol U.D., Riebe M., Schmidt P.O., Becher C., Gühne O., Dür W., Blatt R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Leibfried D., Knill E., Seidelin S., Britton J., Blakestad R.B., Chiaverini J., Hume D.B., Itano W.M., Jost J.D., Langer C., Ozeri R., Reichle R., Wineland D.J.: Creation of a six-atom ’Schrödinger cat’ state. Nature 438, 639 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Monz T., Schindler P., Barreiro J.T., Chwalla M., Nigg D., Coish W.A., Harlander M., Hänsel W., Hennrich M., Blatt R.: 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Hughes R.J., James D.F.V., Knill E.H., Laflamme R., Petschek A.G.: Decoherence bounds on quantum computation with trapped ions. Phys. Rev. Lett. 77, 3240 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Kielpinski D., Monroe C., Wineland D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Jaksch D., Briegel H.-J., Cirac J.I., Gardiner C.W., Zoller P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Charron E., Tiesinga E., Mies F., Williams C.: Optimizing a phase gate using quantum interference. Phys. Rev. Lett. 88, 077901 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Treutlein P., Steinmetz T., Colombe Y., Lev B., Hommelhoff P., Reichel J., Greiner M., Mandel O., Widera A., Rom T., Bloch I., Hänsch T.W.: Quantum information processing in optical lattices and magnetic microtraps. Fortschr. Phys. 54, 702 (2006)CrossRefGoogle Scholar
  26. 26.
    Treutlein P., Hansch T.W., Reichel J., Negretti A., Cirone M.A., Calarco T.: Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74, 022312 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Böhi P., Riedel M.F., Hoffrogge J., Reichel J., Hänsch T.W., Treutlein P.: Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip. Nat. Phys. 5, 592 (2009)CrossRefGoogle Scholar
  28. 28.
    Jaksch D., Bruder C., Cirac J.I., Gardiner C.W., Zoller P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Calarco T., Dorner U., Julienne P.S., Williams C.J., Zoller P.: Quantum computations with atoms in optical lattices: marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Weitenberg C., Kuhr S., Mølmer K., Sherson J.F.: Quantum computation architecture using optical tweezers. Phys. Rev. A 84, 032322 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Huber G., Deuschle T., Schnitzler W., Reichle R., Singer K., Schmidt-Kaler F.: Transport of ions in a segmented linear Paul trap in printed-circuit-board technology. New J. Phys. 10, 013004 (2008)CrossRefGoogle Scholar
  33. 33.
    Hohenester U., Rekdal P.K., Borzì A., Schmiedmayer J.: Optimal quantum control of Bose-Einstein condensates in magnetic microtraps. Phys. Rev. A 75, 023602 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Murphy M., Jiang L., Khaneja N., Calarco T.: High-fidelity fast quantum transport with imperfect controls. Phys. Rev. A 79, 020301 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Chen X., Torrontegui E., Stefanatos D., Li J.-S., Muga J.G.: Optimal trajectories for efficient atomic transport without final excitation. Phys. Rev. A 84, 043415 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Torrontegui, E., Chen, X., Modugno, M., Schmidt, S., Ruschhaupt, A., Muga, J.G.: Fast transport of Bose-Einstein condensates. New J. Phys. (accepted). arXiv:1103.2532v1Google Scholar
  37. 37.
    Bücker R., Grond J., Manz S., Berrada T., Betz T., Koller C., Hohenester U., Schumm T., Perrin A., Schmiedmayer J.: Twin-atom beams. Nat. Phys. 7, 608 (2011)CrossRefGoogle Scholar
  38. 38.
    Eckert K., Lewenstein M., Corbalán R., Birkl G., Ertmer W., Mompart J.: Three-level atom optics via the tunneling interaction. Phys. Rev. A 70, 023606 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Bergmann K., Theuer H., Shore B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Benseny A., Fernández-Vidal S., Bagudà J., Corbalán R., Picón A., Roso L., Birkl G., Mompart J.: Atomtronics with holes: coherent transport of an empty site in a triple-well potential. Phys. Rev. A 82, 013604 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Mompart J., Eckert K., Ertmer W., Birkl G., Lewenstein M.: Quantum computing with spatially delocalized qubits. Phys. Rev. Lett. 90, 147901 (2003)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Charron E., Cirone M.A., Negretti A., Schmiedmayer J., Calarco T.: Theoretical analysis of a realistic atom-chip quantum gate. Phys. Rev. A 74, 012308 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Brennen G.K., Caves C.M., Jessen P.S., Deutsch I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    Zobay O., Garraway B.M.: Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    Lesanovsky I., Schumm T., Hofferberth S., Andersson L.M., Krüger P., Schmiedmayer J.: Adiabatic radio-frequency potentials for the coherent manipulation of matter waves. Phys. Rev. A 73, 033619 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Hofferberth S., Fischer B., Schumm T., Schmiedmayer J., Lesanovsky I.: Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys. Rev. A 76, 013401 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    Morgan T., O’Sullivan B., Busch T.: Coherent adiabatic transport of atoms in radio-frequency traps. Phys. Rev. A 83, 053620 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Schulz S., Poschinger U., Singer K., Schmidt-Kaler F.: Optimization of segmented linear Paul traps and transport of stored particles. Fortschr. Phys. 54, 648 (2006)CrossRefGoogle Scholar
  49. 49.
    Reichle R., Leibfried D., Blakestad R., Britton J., Jost J., Knill E., Langer C., Ozeri R., Seidelin S., Wineland D.: Transport dynamics of single ions in segmented microstructured Paul trap arrays. Fortschr. Phys. 54, 666 (2006)zbMATHCrossRefGoogle Scholar
  50. 50.
    Lengwenus A., Kruse J., Volk M., Ertmer W., Birkl G.: Coherent manipulation of atomic qubits in optical micropotentials. Appl. Phys. B 86, 377 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Lengwenus A., Kruse J., Schlosser M., Tichelmann S., Birkl G.: Coherent transport of atomic quantum states in a scalable shift register. Phys. Rev. Lett. 105, 170502 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Kruse J., Gierl C., Schlosser M., Birkl G.: Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps. Phys. Rev. A 81, 060308 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    Bhattacharyya K.: Quantum decay and the Mandelstam-Tamm-energy inequality. J. Phys. A Math. Gen. 16, 2993 (1983)ADSCrossRefGoogle Scholar
  54. 54.
    Giovannetti V., Lloyd S., Maccone L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    Caneva T., Murphy M., Calarco T., Fazio R., Montangero S., Giovannetti V., Santoro G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Caneva T., Calarco T., Montangero S.: Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Doria P., Calarco T., Montangero S.: Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    Caruso, F., Montangero, S., Calarco, T., Huelga, S.F., Plenio, M.B.: Coherent open-loop optimal control of light-harvesting dynamics. arXiv:1103.0929v1Google Scholar
  59. 59.
    Krotov V.F.: Global Methods in Optimal Control Theory, vol. 195. Marcel Dekker, New York (1996)Google Scholar
  60. 60.
    Sklarz S.E., Tannor D.J.: Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation. Phys. Rev. A 66, 053619 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    Reich, D., Ndong, M., Koch, C.P.: Monotonically convergent optimization in quantum control using Krotov’s method. arXiv:1008.5126v2Google Scholar
  62. 62.
    Khaneja N., Reiss T., Kehlet C., Schulte-Herbrüggen T., Glaser S.J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes, 3rd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  64. 64.
    Gajdacz M., Opatrný T., Das K.K.: Transparent nonlocal species-selective transport in an optical superlattice containing two interacting atom species. Phys. Rev. A 83, 033623 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Graefe E.M., Korsch H.J., Witthaut D.: Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage. Phys. Rev. A 73, 013617 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    Negretti A., Calarco T., Cirone M.A., Recati A.: Performance of quantum phase gates with cold trapped atoms. Eur. Phys. J. D 32, 119 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation, International Series of Monographs on Physics, vol. 116. The Clarendon Press Oxford University Press, Oxford (2003)Google Scholar
  68. 68.
    Olshanii M.: Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    Mølmer K.: Phase collapse and excitations in Bose-Einstein condensates. Phys. Rev. A 58, 566 (1998)ADSCrossRefGoogle Scholar
  70. 70.
    Castin Y., Dum R.: Low-temperature Bose-Einstein condensates in time-dependent traps: beyond the U(1) symmetry-breaking approach. Phys. Rev. A 57, 3008 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    Schlosser M., Tichelmann S., Kruse J., Birkl G.: Scalable architecture for quantum information processing with atoms in optical micro-structures. Quantum Inf. Process. 10, 907 (2011)CrossRefGoogle Scholar
  72. 72.
    Bergamini S., Darquié B., Jones M., Jacubowiez L., Browaeys A., Grangier P.: Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J. Opt. Soc. Am. B 21, 1889 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    Treutlein P., Hommelhoff P., Steinmetz T., Hänsch T.W., Reichel J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Antonio Negretti
    • 1
  • Albert Benseny
    • 2
  • Jordi Mompart
    • 2
  • Tommaso Calarco
    • 1
  1. 1.Institut für QuanteninformationsverarbeitungUniversität UlmUlmGermany
  2. 2.Departament de Física, Grup d’ÒpticaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations