The physics of ghost imaging

Abstract

Ghost images are obtained by correlating the output of a single-pixel (bucket) photodetector—which collects light that has been transmitted through or reflected from an object—with the output from a high spatial-resolution scanning photodetector or photodetector array whose illumination has not interacted with that object. The term “ghost image” is apt because neither detector’s output alone can yield an image: the bucket detector has no spatial resolution, while the high spatial-resolution detector has not viewed the object. The first ghost imaging experiment relied on the entangled signal and idler outputs from a spontaneous parametric downconverter, and hence the image was interpreted as a quantum phenomenon. Subsequent theory and experiments showed, however, that classical correlations can be used to form ghost images. For example, ghost images can be formed with pseudothermal light, for which quantum mechanics is not required to characterize its photodetection statistics. This paper presents an overview of the physics of ghost imaging. It clarifies and unites two disparate interpretations of pseudothermal ghost imaging—two-photon interference and classical intensity-fluctuation correlations—that had previously been thought to be conflicting. It also reviews recent work on ghost imaging in reflection, ghost imaging through atmospheric turbulence, computational ghost imaging, and two-color ghost imaging.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Pittman T.B., Shih Y.H., Strekalov D.V., Sergienko A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995)

    ADS  Article  Google Scholar 

  2. 2

    Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Role of entanglement in two-photon imaging. Phys. Rev. Lett. 87, 123602 (2001)

    ADS  Article  Google Scholar 

  3. 3

    Bennink R.S., Bentley S.J., Boyd R.W.: “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002)

    ADS  Article  Google Scholar 

  4. 4

    Gatti A., Brambilla E., Lugiato L.A.: Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm. Phys. Rev. Lett. 90, 133603 (2003)

    ADS  Article  Google Scholar 

  5. 5

    Bennink R.S., Bentley S.J., Boyd R.W., Howell J.C.: Quantum and classical coincidence imaging. Phys. Rev. Lett. 92, 033601 (2004)

    ADS  Article  Google Scholar 

  6. 6

    Howell J.C., Bennink R.S., Bentley S.J., Boyd R.W.: Realization of the Einstein–Podolsky–Rosen paradox using momentum and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)

    ADS  Article  Google Scholar 

  7. 7

    Reid M.D.: Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989)

    ADS  Article  Google Scholar 

  8. 8

    Gatti A., Brambilla E., Bache M., Lugiato L.A.: Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004)

    ADS  Article  Google Scholar 

  9. 9

    Gatti A., Brambilla E., Bache M., Lugiato L.A.: Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602 (2004)

    ADS  Article  Google Scholar 

  10. 10

    Cai Y., Zhu S.-Y.: Ghost imaging with incoherent and partially coherent light radiation. Phys. Rev. E 71, 056607 (2005)

    ADS  Article  Google Scholar 

  11. 11

    Cai Y., Zhu S.-Y.: Ghost interference with partially coherent light radiation. Opt. Lett. 29, 2716–2718 (2004)

    ADS  Article  Google Scholar 

  12. 12

    Valencia A., Scarcelli G., D’Angelo M., Shih Y.: Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005)

    ADS  Article  Google Scholar 

  13. 13

    Ferri F., Magatti D., Gatti A., Bache M., Brambilla E., Lugiato L.A.: High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005)

    ADS  Article  Google Scholar 

  14. 14

    Scarcelli G., Berardi V., Shih Y.: Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?. Phys. Rev. Lett. 96, 063602 (2006)

    ADS  Article  Google Scholar 

  15. 15

    Erkmen B.I., Shapiro J.H.: Unified theory of ghost imaging with Gaussian-state light. Phys. Rev. A 77, 043809 (2008)

    ADS  Article  Google Scholar 

  16. 16

    Shapiro J.H.: Computational ghost imaging. Phys. Rev. A 78, 061802(R) (2008)

    ADS  Google Scholar 

  17. 17

    Shapiro, J.H.: The quantum theory of optical communications. IEEE J. Sel. Top. Quantum Electron. 15, 1547–1569 (2009); Shapiro, J.H. Corrections to “The quantum theory of optical communications” IEEE J. Sel. Top. Quantum Electron. 16, 698 (2010)

    Google Scholar 

  18. 18

    Erkmen B.I., Shapiro J.H.: Ghost imaging: from quantum to classical to computational. Adv. Opt. Photon. 2, 405–450 (2010)

    Article  Google Scholar 

  19. 19

    Meyers R., Deacon K.S., Shih Y.: Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 77, 041801(R) (2008)

    ADS  Article  Google Scholar 

  20. 20

    Meyers R.E., Deacon K.S., Shih Y.: Quantum imaging of an obscured object by measurement of reflected photons. Proc. SPIE 7092, 70920E (2008)

    ADS  Article  Google Scholar 

  21. 21

    Meyers R.E., Deacon K.S.: Quantum ghost imaging experiments at ARL. Proc. SPIE 7815, 78150I (2010)

    ADS  Article  Google Scholar 

  22. 22

    Cheng J.: Ghost imaging through turbulent atmosphere. Opt. Express 17, 7916–7921 (2009)

    ADS  Article  Google Scholar 

  23. 23

    Hardy N.D., Shapiro J.H.: Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio. Proc. SPIE 7815, 78150P (2010)

    ADS  Article  Google Scholar 

  24. 24

    Hardy, N.D.: Analyzing and improving image quality in reflective ghost imaging. S.M. thesis, MIT (2011)

  25. 25

    Bromberg Y., Katz O., Silberberg Y.: Ghost imaging with a single detector. Phys. Rev. A 79, 053840 (2009)

    ADS  Article  Google Scholar 

  26. 26

    Katz O., Bromberg Y., Silberberg Y.: Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009)

    ADS  Article  Google Scholar 

  27. 27

    Rubin M.H., Shih Y.: Resolution of ghost imaging for nondegenerate spontaneous parametric downconversion. Phys. Rev. A 78, 033836 (2008)

    ADS  Article  Google Scholar 

  28. 28

    Chan K.W.C., O’Sullivan M.N., Boyd R.W.: Two-color ghost imaging. Phys. Rev. A 79, 033808 (2009)

    ADS  Article  Google Scholar 

  29. 29

    Karmakar S., Shih Y.: Observation of two-color ghost imaging. Proc. SPIE 7815, 78150R (2010)

    Google Scholar 

  30. 30

    Erkmen B.I., Shapiro J.H.: Signal-to-noise ratio of Gaussian-state ghost imaging. Phys. Rev. A 79, 023833 (2009)

    ADS  Article  Google Scholar 

  31. 31

    O’Sullivan M.N., Chan K.W.C., Boyd R.W.: Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. Phys. Rev. A 82, 053803 (2010)

    ADS  Article  Google Scholar 

  32. 32

    Chan K.W.C., O’Sullivan M.N., Boyd R.W.: High-order thermal ghost imaging. Opt. Lett. 34, 3343–3345 (2009)

    ADS  Article  Google Scholar 

  33. 33

    Chan K.W.C., O’Sullivan M.N., Boyd R.W.: Optimization of thermal ghost imaging: high-order correlations vs. background subtraction. Opt. Express 18, 5562–5573 (2010)

    ADS  Article  Google Scholar 

  34. 34

    Wong F.N.C., Kim T., Shapiro J.H.: Efficient generation of polarization-entangled photons in a nonlinear crystal. Laser Phys. 16, 1517–1524 (2006)

    ADS  Article  Google Scholar 

  35. 35

    Le Gouët J., Venkatraman D., Wong F.N.C., Shapiro J.H.: Classical low-coherence interferometry based on broadband parametric fluorescence and amplification. Opt. Express 17, 17874 (2009)

    ADS  Article  Google Scholar 

  36. 36

    Yuen H.P., Shapiro J.H.: Optical communication with two-photon coherent states—Part III: Quantum measurements realizable with photoemissive detectors. IEEE Trans. Inf. Theory 26, 78–92 (1980)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  37. 37

    Wozencraft J.M., Jacobs I.M.: Principles of Communication Engineering, pp. 205–206. Wiley, New York (1965)

    Google Scholar 

  38. 38

    Shapiro J.H., Sun K.-X.: Semiclassical versus quantum behavior in fourth-order interference. J. Opt. Soc. Am. B 11, 1130–1141 (1994)

    ADS  Article  Google Scholar 

  39. 39

    Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  40. 40

    Shapiro J.H., Shakeel A.: Optimizing homodyne detection of quadratures-noise squeezing via local-oscillator selection. J. Opt. Soc. Am. B 14, 232–249 (1997)

    ADS  Article  Google Scholar 

  41. 41

    Saleh B.E.A., Abouraddy A.R., Sergienko A.V., Teich M.C.: Duality between partial coherence and partial entanglement. Phys. Rev. A 62, 043816 (2000)

    ADS  Article  Google Scholar 

  42. 42

    Erkmen B.I., Shapiro J.H.: Optical coherence theory for phase-sensitive light. Proc. SPIE 6305, 63050G (2006)

    ADS  Article  Google Scholar 

  43. 43

    Yuen H.P., Shapiro J.H.: Optical communication with two-photon coherent states—Part I: quantum state propagation and quantum noise reduction. IEEE Trans. Inf. Theory 24, 657–668 (1978)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  44. 44

    Shih Y.: Quantum imaging. IEEE J. Sel. Top. Quantum Electron. 13, 1016–1030 (2007)

    Article  Google Scholar 

  45. 45

    Goodman J.W.: Speckle Phenomena in Optics: Theory and Applications. Roberts & Co., Englewood, CO (2007)

    Google Scholar 

  46. 46

    Glauber R.J.: Optical coherence and photon statistics. In: DeWitt, C., Blandin, A., Cohen-Tannoudji, C. (eds) Quantum Optics and Electronics, Gordon and Breach, New York (1965)

    Google Scholar 

  47. 47

    Tatarski V.I.: Wave Propagation in a Turbulent Medium. Dover Publications, New York (1961)

    Google Scholar 

  48. 48

    Strohbehn, J.W. (eds): Laser Beam Propagation in the Atmosphere. Springer, Berlin (1978)

    Google Scholar 

  49. 49

    Ishimaru A.: Wave Propagation and Scattering in Random Media. Academic Press, New York (1978)

    Google Scholar 

  50. 50

    Shapiro J.H., Capron B.A., Harney R.C.: Imaging and target detection with a heterodyne-reception optical radar. Appl. Opt. 20, 3292–3313 (1981)

    ADS  Article  Google Scholar 

  51. 51

    Dixon P.B., Howland G., Chan K.W.C., O’Sullivan-Hale C., Rodenburg B., Hardy N.D., Shapiro J.H., Simon D.S., Sergienko A.V., Boyd R.W., Howell J.C.: Quantum ghost imaging through turbulence. Phys. Rev. A 83, 051803(R) (2011)

    ADS  Article  Google Scholar 

  52. 52

    Candès E., Wakin M.B.: Compressive sampling. IEEE Signal Proc. Mag. 25, 21–30 (March 2008)

  53. 53

    Duarte M.F., Davenport M.A., Takhar D., Laska J.N., Sun T., Kelly K.F., Baraniuk R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Proc. Mag. 25, 83–91 (March 2008)

    Google Scholar 

  54. 54

    Jack B., Leach J., Romero J., Franke-Arnold S., Ritsch-Marte M., Barnett S.M., Padgett M.J.: Holographic ghost imaging and the violation of a Bell inequality. Phys. Rev. Lett. 103, 083602 (2009)

    ADS  Article  Google Scholar 

  55. 55

    Malik M., Shin H., O’Sullivan M., Zerom P., Boyd R.W.: Quantum ghost image discrimination with correlated photon pairs. Phys. Rev. Lett. 104, 163602 (2010)

    ADS  Article  Google Scholar 

  56. 56

    Liu Q., Chen X.-H., Luo K.-H., Wu W., Wu L.-A.: Role of multiphoton bunching in high-order ghost imaging with thermal light sources. Phys. Rev. A 79, 053844 (2009)

    ADS  Article  Google Scholar 

  57. 57

    Ou L.-H., Kuang L.-M.: Ghost imaging with third-order correlated thermal light. J. Phys B 40, 1833–1844 (2007)

    ADS  Article  Google Scholar 

  58. 58

    Bache M., Brambilla E., Gatti A., Lugiato L.A.: Ghost imaging using homodyne detection. Phys. Rev. A 70, 023823 (2004)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Shapiro.

Additional information

This work was supported by the U.S. Army Research Office MURI grant W911NF-05-0197.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shapiro, J.H., Boyd, R.W. The physics of ghost imaging. Quantum Inf Process 11, 949–993 (2012). https://doi.org/10.1007/s11128-011-0356-5

Download citation

Keywords

  • Ghost imaging
  • Photon statistics
  • Entanglement
  • Coherence theory
  • Atmospheric turbulence