Single and biphoton imaging and high dimensional quantum communication

Abstract

Here, we present recent developments in the field of quantum imaging focusing on the high dimensionality aspects of single and biphoton imaging. We discuss some systems that have a “quantum advantage” over classical counterparts. We highlight some recent experiments in single-photon image discrimination, large alphabet quantum key distribution and image buffering.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Bennett C.H., Brassard G.: Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. SIGACT News 20(4), 78–80 (1989)

    Article  Google Scholar 

  2. 2

    Ekert A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  3. 3

    Shor P.W., Preskill J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    ADS  Article  Google Scholar 

  4. 4

    Shor, P.W.: In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Los Alamitos, CA. IEEE Computer Society Press, New York (1994)

  5. 5

    Deutsch D.: Quantum Computational Networks. Proc. Roy. Soc. Lond. Math. Phys. Sci. 425(1868), 73–90 (1989)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  6. 6

    Cirac J.I., Zoller P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    ADS  Article  Google Scholar 

  7. 7

    Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    ADS  Article  Google Scholar 

  8. 8

    Monroe C., Meekhof D.M., King B.E., Itano W.M., Wineland D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  9. 9

    Kolobov M.: The spatial behavior of nonclassical light. Rev. Mod. Phys. 71, 1539 (1999)

    ADS  Article  Google Scholar 

  10. 10

    Pierce E.C.P.J.R., Rodemich E.R.: The capacity of the photon counting channel. IEEE Trans. Inf. Theory 27, 61 (1981)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11

    Shannon C.E.: The mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948)

    MathSciNet  MATH  Google Scholar 

  12. 12

    Mair A., Vaziri A., Weihs G., Zeilinger A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001)

    ADS  Article  Google Scholar 

  13. 13

    Molina-Terriza G., Torres J.P., Torner L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001)

    ADS  Article  Google Scholar 

  14. 14

    Leach J., Courtial J., Skeldon K., Barnett S.M., Franke-Arnold S., Padgett M.J.: Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 92, 013601 (2004)

    ADS  Article  Google Scholar 

  15. 15

    de Riedmatten H., Marcikic I., Scarani V., Tittel W., Zbinden H., Gisin N.: Tailoring photonic entanglement in high-dimensional hilbert spaces. Phys. Rev. A 69, 050304(R) (2004)

    Google Scholar 

  16. 16

    Barreiro J.T., Langford N.K., Peters N.A., Kwiat P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    ADS  Article  Google Scholar 

  17. 17

    Walborn S.P., Lemelle D.S., Almeida M.P., SoutoRibeiro P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    ADS  Article  Google Scholar 

  18. 18

    Walther P., Aspelmeyer M., Zeilinger A.: Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007)

    ADS  Article  Google Scholar 

  19. 19

    O’Sullivan-Hale M.N., Khan I.A., Boyd R.W., Howell J.C.: Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits. Phys. Rev. Lett. 94, 220501 (2005)

    Article  Google Scholar 

  20. 20

    Ali-Khan I., Broadbent C.J., Howell J.C.: Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98, 060503 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Turin G.L.: An introduction to matched filters: IRE Trans. Inf. Theory 6, 311 (1960)

    MathSciNet  Article  Google Scholar 

  22. 22

    Goodman J.: Introduction to Fourier Optics, 3rd edn. Roberts and Company, Greenwood Village, CO (2005)

    Google Scholar 

  23. 23

    Lugt A.V.: Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory 10(2), 139 (1964)

    MATH  Article  Google Scholar 

  24. 24

    Horner, J.L., Gianino, P.D.: Phase-only matched filtering. Appl. Opt. 23(6), 812–816 (1984). http://ao.osa.org/abstract.cfm?URI=ao-23-6-812

    Google Scholar 

  25. 25

    Broadbent C.J., Zerom P., Shin H., Howell J.C., Boyd R.W.: Discriminating orthogonal single-photon images. Phys. Rev. A. 79(3), 033802 (2009)

    ADS  Article  Google Scholar 

  26. 26

    Malik M., Shin H., O’Sullivan M., Zerom P., Boyd R.W.: Quantum ghost image identification with correlated photon pairs. Phys. Rev. Lett. 104(16), 163602 (2010)

    ADS  Article  Google Scholar 

  27. 27

    Camacho R.M., Broadbent C.J., Ali-Khan I., Howell J.C.: All-optical delay of images using slow light. Phys. Rev. Lett. 98, 043902 (2007)

    ADS  Article  Google Scholar 

  28. 28

    Vander Lugt A.: Coherent optical processing. Proc. IEEE 62, 1300 (1974)

    ADS  Article  Google Scholar 

  29. 29

    Morris G.M., George N.: Frequency-plane filtering with an achromatic optical transform. Opt. Lett. 5, 202 (1980)

    ADS  Article  Google Scholar 

  30. 30

    An X., Psaltis D., Burr G.W.: Thermal fixing of 10,000 holograms in linbo3:fe. Appl. Opt. 38(2), 386–393 (1999)

    ADS  Article  Google Scholar 

  31. 31

    Morris G.M.: Image correlation at low light levels: a computer simulation. Appl. Opt. 23(18), 3152 (1984)

    ADS  Article  Google Scholar 

  32. 32

    Peres A., Terno D.R.: Optimal distinction between non-orthogonal quantum states. J. Phys. A 31(34), 7105 (1998)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  33. 33

    Li X., Voss P.L., Chen J., Sharping J.E., Kumar P.: Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber. Opt. Lett. 30, 1201 (2005)

    ADS  Article  Google Scholar 

  34. 34

    Neves L., Lima G., Gómez J.G.A., Monken C.H., Saavedra C., Pádua S.: Generation of entangled states of qudits using twin photons. Phys. Rev. Lett. 94, 100501 (2005)

    ADS  Article  Google Scholar 

  35. 35

    Barreiro J.T., Langford N.K., Peters N.A., Kwiat P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    ADS  Article  Google Scholar 

  36. 36

    Cerf N.J., Bourennane M., Karlsson A., Gisin N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    ADS  Article  Google Scholar 

  37. 37

    Nikolopoulos G.M., Ranade K.S., Alber G.: Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73, 32325 (2006)

    ADS  Article  Google Scholar 

  38. 38

    Grice W.P., Walmsley I. A.: Spectral information and distinguishability in type-ii down-conversion with a broadband pump. Phys. Rev. A 56, 1627 (1997)

    ADS  Article  Google Scholar 

  39. 39

    Ali-Khan I., Howell J.C.: Experimental demonstration of high two-photon time-energy entanglement. Phys. Rev. A 73, 031801(R) (2006)

    ADS  Google Scholar 

  40. 40

    Law C.K., Eberly J.H.: Analysis and interpretation of high transverse entanglement in optical paramet ric down conversion. Phys. Rev. Lett. 92, 127903 (2004)

    ADS  Article  Google Scholar 

  41. 41

    Pryde G.J., OB́rien J.L., White A.G., Ralph T.C., Wiseman H.M.: Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 220405 (2005)

    ADS  Article  Google Scholar 

  42. 42

    Franson J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205 (1989)

    ADS  Article  Google Scholar 

  43. 43

    Tittel W., Brendel J., Zbinden H., Gisin N.: Violation of bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563 (1998)

    ADS  Article  Google Scholar 

  44. 44

    Marcikic I., de Riedmatten H., Tittel W., Zbinden H., Legre M., Gisin N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    ADS  Article  Google Scholar 

  45. 45

    Boyd, R.W., Gauthier, D.J.: In: Wolf, E. (eds.) Progress in Optics, vol. 43. Elsevier, Amsterdam, p. 497 (2002)

  46. 46

    Chiao R., Milonni P.: Fast light, slow light. Opt. Photonics News 13, 26 (2002)

    ADS  Article  Google Scholar 

  47. 47

    Camacho R.M., Pack M.V., Howell J.C.: Low-distortion slow light using two absorption resonances. Phys. Rev. A 73, 063812 (2006)

    ADS  Article  Google Scholar 

  48. 48

    Kasapi A., Jain M., Yin G.Y., Harris S.E.: Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995)

    ADS  Article  Google Scholar 

  49. 49

    Jain M., Merriam A.J., Kasapi A., Yin G.Y., Harris S.E.: Elimination of optical self-focusing by population trapping. Phys. Rev. Lett. 75(24), 4385–4388 (1995)

    ADS  Article  Google Scholar 

  50. 50

    Kash M.M., Sautenkov V.A., Zibrov A.S., Hollberg L., Welch G.R., Lukin M.D., Rostovtsev Y., Fry E.S., Scully M.O.: Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82(26), 5229–5232 (1999)

    ADS  Article  Google Scholar 

  51. 51

    Budker D., Kimball D.F., Rochester S.M., Yashchuk V.V.: Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83(9), 1767–1770 (1999)

    ADS  Article  Google Scholar 

  52. 52

    Hau L.V., Harris S.E., Dutton Z., Behroozi C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    ADS  Article  Google Scholar 

  53. 53

    Liu C., Dutton Z., Behroozi C.H., Hau L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    ADS  Article  Google Scholar 

  54. 54

    Turukhin A.V., Sudarshanam V.S., Shahriar M.S., Musser J.A., Ham B.S., Hemmer P.R.: Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2002)

    ADS  Article  Google Scholar 

  55. 55

    Bigelow M.S., Lepeshkin N.N., Boyd R.W.: Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett. 90(11), 113903 (2003)

    ADS  Article  Google Scholar 

  56. 56

    Zhao, X., Palinginis, P., Pesala, B., Chang-Hasnain, C., Hemmer, P.: Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. Opt. Express 13(20), 7899–7904 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-20-7899

    Google Scholar 

  57. 57

    Palinginis, P., Sedgwick, F., Crankshaw, S., Moewe, M., Chang-Hasnain, C.: Room temperature slow light in a quantum-well waveguide via coherent population oscillation. Opt. Express 13(24), 9909–9915 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-24-9909

  58. 58

    Camacho R.M., Pack M.V., Howell J.C.: Slow light with large fractional delays by spectral hole-burning in rubidium vapor. Phys. Rev. A 74(3), 033801 (2006)

    ADS  Article  Google Scholar 

  59. 59

    Tanaka H., Niwa H., Hayami K., Furue S., Nakayama K., Kohmoto T., Kunitomo M., Fukuda Y.: Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in rb vapor. Phys. Rev. A. 68(5), 053801 (2003)

    ADS  Article  Google Scholar 

  60. 60

    Macke B., Ségard B.: Pulse normalization in slow-light media. Phys. Rev. A 73(4), 043802 (2006)

    ADS  Article  Google Scholar 

  61. 61

    Zhu, Z., Gauthier, D.J.: Nearly transparent sbs slow light in an optical fiber. Opt. Express 14(16), 7238–7245 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-16-7238

  62. 62

    Phillips D.F., Fleischauer A., Mair A., Walsworth R.L.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)

    ADS  Article  Google Scholar 

  63. 63

    Kocharovskaya O., Rostovtsev Y., Scully M.O.: Stopping light via hot atoms. Phys. Rev. Lett. 86(4), 628–631 (2001)

    ADS  Article  Google Scholar 

  64. 64

    Bajcsy M., Zibrov A.S., Lukin M.D.: Stationary pulses of light in an atomic medium. Nature. 426, 638 (2003)

    ADS  Article  Google Scholar 

  65. 65

    Yanik M.F., Suh W., Wang Z., Fan S.: Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93(23), 233903 (2004)

    ADS  Article  Google Scholar 

  66. 66

    Anisimov P.M., Lum D.J., McCracken S.B., Lee H., Dowling J.P.: An invisible quantum tripwire. New J. Phys. 12, 083012 (2010)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John C. Howell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Howell, J.C., Anisimov, P.M., Dowling, J.P. et al. Single and biphoton imaging and high dimensional quantum communication. Quantum Inf Process 11, 925–948 (2012). https://doi.org/10.1007/s11128-011-0299-x

Download citation

Keywords

  • Quantum optics
  • Quantum communication
  • Quantum imaging
  • Slow light
  • Entangled photons