Quantum Information Processing

, Volume 11, Issue 4, pp 925–948 | Cite as

Single and biphoton imaging and high dimensional quantum communication

  • John C. HowellEmail author
  • Petr M. Anisimov
  • Jonathan P. Dowling
  • Robert W. Boyd


Here, we present recent developments in the field of quantum imaging focusing on the high dimensionality aspects of single and biphoton imaging. We discuss some systems that have a “quantum advantage” over classical counterparts. We highlight some recent experiments in single-photon image discrimination, large alphabet quantum key distribution and image buffering.


Quantum optics Quantum communication Quantum imaging Slow light Entangled photons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett C.H., Brassard G.: Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. SIGACT News 20(4), 78–80 (1989)CrossRefGoogle Scholar
  2. 2.
    Ekert A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Shor P.W., Preskill J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Shor, P.W.: In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Los Alamitos, CA. IEEE Computer Society Press, New York (1994)Google Scholar
  5. 5.
    Deutsch D.: Quantum Computational Networks. Proc. Roy. Soc. Lond. Math. Phys. Sci. 425(1868), 73–90 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Cirac J.I., Zoller P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Monroe C., Meekhof D.M., King B.E., Itano W.M., Wineland D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Kolobov M.: The spatial behavior of nonclassical light. Rev. Mod. Phys. 71, 1539 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Pierce E.C.P.J.R., Rodemich E.R.: The capacity of the photon counting channel. IEEE Trans. Inf. Theory 27, 61 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Shannon C.E.: The mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mair A., Vaziri A., Weihs G., Zeilinger A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Molina-Terriza G., Torres J.P., Torner L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Leach J., Courtial J., Skeldon K., Barnett S.M., Franke-Arnold S., Padgett M.J.: Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 92, 013601 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    de Riedmatten H., Marcikic I., Scarani V., Tittel W., Zbinden H., Gisin N.: Tailoring photonic entanglement in high-dimensional hilbert spaces. Phys. Rev. A 69, 050304(R) (2004)Google Scholar
  16. 16.
    Barreiro J.T., Langford N.K., Peters N.A., Kwiat P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Walborn S.P., Lemelle D.S., Almeida M.P., SoutoRibeiro P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Walther P., Aspelmeyer M., Zeilinger A.: Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    O’Sullivan-Hale M.N., Khan I.A., Boyd R.W., Howell J.C.: Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits. Phys. Rev. Lett. 94, 220501 (2005)CrossRefGoogle Scholar
  20. 20.
    Ali-Khan I., Broadbent C.J., Howell J.C.: Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98, 060503 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Turin G.L.: An introduction to matched filters: IRE Trans. Inf. Theory 6, 311 (1960)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Goodman J.: Introduction to Fourier Optics, 3rd edn. Roberts and Company, Greenwood Village, CO (2005)Google Scholar
  23. 23.
    Lugt A.V.: Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory 10(2), 139 (1964)zbMATHCrossRefGoogle Scholar
  24. 24.
    Horner, J.L., Gianino, P.D.: Phase-only matched filtering. Appl. Opt. 23(6), 812–816 (1984). Google Scholar
  25. 25.
    Broadbent C.J., Zerom P., Shin H., Howell J.C., Boyd R.W.: Discriminating orthogonal single-photon images. Phys. Rev. A. 79(3), 033802 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Malik M., Shin H., O’Sullivan M., Zerom P., Boyd R.W.: Quantum ghost image identification with correlated photon pairs. Phys. Rev. Lett. 104(16), 163602 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Camacho R.M., Broadbent C.J., Ali-Khan I., Howell J.C.: All-optical delay of images using slow light. Phys. Rev. Lett. 98, 043902 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Vander Lugt A.: Coherent optical processing. Proc. IEEE 62, 1300 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    Morris G.M., George N.: Frequency-plane filtering with an achromatic optical transform. Opt. Lett. 5, 202 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    An X., Psaltis D., Burr G.W.: Thermal fixing of 10,000 holograms in linbo3:fe. Appl. Opt. 38(2), 386–393 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Morris G.M.: Image correlation at low light levels: a computer simulation. Appl. Opt. 23(18), 3152 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    Peres A., Terno D.R.: Optimal distinction between non-orthogonal quantum states. J. Phys. A 31(34), 7105 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Li X., Voss P.L., Chen J., Sharping J.E., Kumar P.: Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber. Opt. Lett. 30, 1201 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Neves L., Lima G., Gómez J.G.A., Monken C.H., Saavedra C., Pádua S.: Generation of entangled states of qudits using twin photons. Phys. Rev. Lett. 94, 100501 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Barreiro J.T., Langford N.K., Peters N.A., Kwiat P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Cerf N.J., Bourennane M., Karlsson A., Gisin N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Nikolopoulos G.M., Ranade K.S., Alber G.: Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73, 32325 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Grice W.P., Walmsley I. A.: Spectral information and distinguishability in type-ii down-conversion with a broadband pump. Phys. Rev. A 56, 1627 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Ali-Khan I., Howell J.C.: Experimental demonstration of high two-photon time-energy entanglement. Phys. Rev. A 73, 031801(R) (2006)ADSGoogle Scholar
  40. 40.
    Law C.K., Eberly J.H.: Analysis and interpretation of high transverse entanglement in optical paramet ric down conversion. Phys. Rev. Lett. 92, 127903 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Pryde G.J., OB́rien J.L., White A.G., Ralph T.C., Wiseman H.M.: Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 220405 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Franson J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    Tittel W., Brendel J., Zbinden H., Gisin N.: Violation of bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Marcikic I., de Riedmatten H., Tittel W., Zbinden H., Legre M., Gisin N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Boyd, R.W., Gauthier, D.J.: In: Wolf, E. (eds.) Progress in Optics, vol. 43. Elsevier, Amsterdam, p. 497 (2002)Google Scholar
  46. 46.
    Chiao R., Milonni P.: Fast light, slow light. Opt. Photonics News 13, 26 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    Camacho R.M., Pack M.V., Howell J.C.: Low-distortion slow light using two absorption resonances. Phys. Rev. A 73, 063812 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Kasapi A., Jain M., Yin G.Y., Harris S.E.: Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    Jain M., Merriam A.J., Kasapi A., Yin G.Y., Harris S.E.: Elimination of optical self-focusing by population trapping. Phys. Rev. Lett. 75(24), 4385–4388 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    Kash M.M., Sautenkov V.A., Zibrov A.S., Hollberg L., Welch G.R., Lukin M.D., Rostovtsev Y., Fry E.S., Scully M.O.: Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82(26), 5229–5232 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    Budker D., Kimball D.F., Rochester S.M., Yashchuk V.V.: Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83(9), 1767–1770 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    Hau L.V., Harris S.E., Dutton Z., Behroozi C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    Liu C., Dutton Z., Behroozi C.H., Hau L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    Turukhin A.V., Sudarshanam V.S., Shahriar M.S., Musser J.A., Ham B.S., Hemmer P.R.: Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    Bigelow M.S., Lepeshkin N.N., Boyd R.W.: Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett. 90(11), 113903 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    Zhao, X., Palinginis, P., Pesala, B., Chang-Hasnain, C., Hemmer, P.: Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. Opt. Express 13(20), 7899–7904 (2005). Google Scholar
  57. 57.
    Palinginis, P., Sedgwick, F., Crankshaw, S., Moewe, M., Chang-Hasnain, C.: Room temperature slow light in a quantum-well waveguide via coherent population oscillation. Opt. Express 13(24), 9909–9915 (2005).
  58. 58.
    Camacho R.M., Pack M.V., Howell J.C.: Slow light with large fractional delays by spectral hole-burning in rubidium vapor. Phys. Rev. A 74(3), 033801 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    Tanaka H., Niwa H., Hayami K., Furue S., Nakayama K., Kohmoto T., Kunitomo M., Fukuda Y.: Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in rb vapor. Phys. Rev. A. 68(5), 053801 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    Macke B., Ségard B.: Pulse normalization in slow-light media. Phys. Rev. A 73(4), 043802 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    Zhu, Z., Gauthier, D.J.: Nearly transparent sbs slow light in an optical fiber. Opt. Express 14(16), 7238–7245 (2006).
  62. 62.
    Phillips D.F., Fleischauer A., Mair A., Walsworth R.L.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    Kocharovskaya O., Rostovtsev Y., Scully M.O.: Stopping light via hot atoms. Phys. Rev. Lett. 86(4), 628–631 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    Bajcsy M., Zibrov A.S., Lukin M.D.: Stationary pulses of light in an atomic medium. Nature. 426, 638 (2003)ADSCrossRefGoogle Scholar
  65. 65.
    Yanik M.F., Suh W., Wang Z., Fan S.: Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93(23), 233903 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    Anisimov P.M., Lum D.J., McCracken S.B., Lee H., Dowling J.P.: An invisible quantum tripwire. New J. Phys. 12, 083012 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • John C. Howell
    • 1
    Email author
  • Petr M. Anisimov
    • 2
  • Jonathan P. Dowling
    • 2
  • Robert W. Boyd
    • 1
    • 3
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA
  2. 2.Hearne Institute for Theoretical Physics, Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA
  3. 3.Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations