Skip to main content

Prospects for using integrated atom-photon junctions for quantum information processing

Abstract

We investigate the use of integrated, microfabricated photonic-atomic junctions for quantum information processing applications. The coupling between atoms and light is enhanced by using microscopic optics without the need for cavity enhancement. Qubits that are collectively encoded in hyperfine states of small ensembles of optically trapped atoms, coupled via the Rydberg blockade mechanism, seem a particularly promising implementation. Fast and high-fidelity gate operations, efficient readout and long coherence times are all possible. Large numbers of qubits can be achieved because of the intrinsic scalability of the microfabricated optics.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Reichel, J., Vuletic , V. (eds.): Atom Chips. Wiley, Amsterdam (2011)

    Google Scholar 

  2. 2

    Kohnen M. et al.: An array of integrated atom-photon junctions. Nat. Photonics 5, 35–38 (2011)

    ADS  Article  Google Scholar 

  3. 3

    Horak P. et al.: Possibility of single-atom detection on a chip. Phys. Rev. A 67, 043806 (2003)

    ADS  Article  Google Scholar 

  4. 4

    Lye J.E., Hope J.J., Close J.D.: Rapid real-time detection of cold atoms with minimal destruction. Phys. Rev. A 69, 023601 (2004)

    ADS  Article  Google Scholar 

  5. 5

    Lodewyck J., Westergaard P.G., Lemonde P.: Nondestructive measurement of the transition probability in a sr optical lattice clock. Phys. Rev. A 79, 061401 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Bernon S. et al.: Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry. New J. Phys. 13, 065021 (2011). doi:10.1088/1367-2630/13/6/065021

    Google Scholar 

  7. 7

    Kohnen M., Petrov P.G., Nyman R.A., Hinds E.A.: Minimally destructive detection of magnetically trapped atoms using frequency-synthesized light. New J. Phys. 13, 085006 (2011). doi:10.1088/1367-2630/13/8/085006

    ADS  Article  Google Scholar 

  8. 8

    Lukin M.D. et al.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    ADS  Article  Google Scholar 

  9. 9

    Saffman M., Walker T.G., Mølmer K.: Quantum information with rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    ADS  Article  Google Scholar 

  10. 10

    DiVincenzo D.P.: The physical implementation of quantum computation. Fortschritte der Physik 48, 771–783 (2000)

    ADS  MATH  Article  Google Scholar 

  11. 11

    Bochmann J. et al.: Lossless state detection of single neutral atoms. Phys. Rev. Lett. 104, 203601 (2010)

    ADS  Article  Google Scholar 

  12. 12

    Heidemann R. et al.: Evidence for coherent collective rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Vandersypen L.M.K., Chuang I.L.: Nmr techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005)

    ADS  Article  Google Scholar 

  14. 14

    Urban, E. et al.: Observation of rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009). http://www.nature.com/nphys/journal/v5/n2/suppinfo/nphys1178_S1.html

    Google Scholar 

  15. 15

    Isenhower L. et al.: Demonstration of a neutral atom controlled-not quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    ADS  Article  Google Scholar 

  16. 16

    Wilk T. et al.: Entanglement of two individual neutral atoms using rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    ADS  Article  Google Scholar 

  17. 17

    Sandoghdar V., Sukenik C.I., Hinds E.A., Haroche S.: Direct measurement of the van der waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432–3435 (1992)

    ADS  Article  Google Scholar 

  18. 18

    Kuebler H., Shaffer J.P., Baluktsian T., Loew R., Pfau T.: Coherent excitation of rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photonics 4, 112–116 (2010)

    ADS  Article  Google Scholar 

  19. 19

    Tauschinsky A., Thijssen R.M.T., Whitlock S., van Linden, van den Heuvell H.B., Spreeuw R.J.C.: Spatially resolved excitation of rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2010)

    ADS  Article  Google Scholar 

  20. 20

    Hinds E.A., Sandoghdar V.: Cavity qed level shifts of simple atoms. Phys. Rev. A 43, 398–403 (1991)

    ADS  Article  Google Scholar 

  21. 21

    Crosse J.A., Ellingsen S.A., Clements K., Buhmann S.Y., Scheel S.: Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces. Phys. Rev. A 82, 010901(R) (2010)

    ADS  Google Scholar 

  22. 22

    Saffman M., Walker T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped rydberg atoms. Phys. Rev. A 72, 022347 (2005)

    ADS  Article  Google Scholar 

  23. 23

    Treutlein P., Hommelhoff P., Steinmetz T., Hänsch T., Reichel J.: Phys. Rev. Lett. 92, 203005 (2004)

    ADS  Article  Google Scholar 

  24. 24

    Rekdal P., Scheel S., Knight P., Hinds E.: Thermal spin flips in atom chips. Phys. Rev. A 70, 013811 (2004)

    ADS  Article  Google Scholar 

  25. 25

    Hwang J., Hinds E.A.: Dye molecules as single-photon sources and large optical nonlinearities on a chip. New J. Phys. 13, (2011). doi:10.1088/1367-2630/13/8/085009

    ADS  Article  Google Scholar 

  26. 26

    Kawachi, M.: Silica waveguides on silicon and their application to integrated-optic components. Optic. Quantum Electron. 22, 391–416 (1990). doi:10.1007/BF02113964

  27. 27

    Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008) http://www.sciencemag.org/cgi/content/abstract/320/5876/646. http://www.sciencemag.org/cgi/reprint/320/5876/646.pdf

    Google Scholar 

  28. 28

    Long, R., Rom, T., Hnsel, W., Hnsch, T.W., Reichel, J. Long distance magnetic conveyor for precise positioning of ultracold atoms. Eur. Phys. J. D. At. Mol. Optic. Plasma Phys. 35, 125–133 (2005). doi:10.1140/epjd/e2005-00177-6.

    Google Scholar 

  29. 29

    Petrosyan D. et al.: Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A 79, 040304 (2009)

    ADS  Article  Google Scholar 

  30. 30

    Trupke, M. et al.: Atom detection and photon production in a scalable, open, optical microcavity. Phys. Rev. Lett. 99, 063601 (2007). http://link.aps.org/abstract/PRL/v99/e063601

  31. 31

    Colombe Y. et al.: Strong atomfield coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    ADS  Article  Google Scholar 

  32. 32

    Gleyzes S. et al.: Towards a monolithic optical cavity for atom detection and manipulation. Eur. Phys. J. D. At. Mol. Optic. Plasma Phys. 53, 107–111 (2009)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. A. Nyman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nyman, R.A., Scheel, S. & Hinds, E.A. Prospects for using integrated atom-photon junctions for quantum information processing. Quantum Inf Process 10, 941 (2011). https://doi.org/10.1007/s11128-011-0298-y

Download citation

Keywords

  • Atom chips
  • Integrated photonics
  • Rydberg atoms
  • Quantum information Processing