Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Quantum Information Processing
  3. Article

Microtrap arrays on magnetic film atom chips for quantum information science

  • Open access
  • Published: 18 September 2011
  • volume 10, Article number: 955 (2011)
Download PDF

You have full access to this open access article

Quantum Information Processing Aims and scope Submit manuscript
Microtrap arrays on magnetic film atom chips for quantum information science
Download PDF
  • V. Y. F. Leung1,
  • A. Tauschinsky1,
  • N. J. van Druten1 &
  • …
  • R. J. C. Spreeuw1 
  • 769 Accesses

  • 34 Citations

  • Explore all metrics

Cite this article

Abstract

We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 μm period, so that qubits can be individually addressed and interactions can be mediated by Rydberg excitations. The second strategy aims for direct quantum simulators using sub-optical lattices of ~100 nm period. These would allow the realization of condensed matter inspired quantum many-body systems, such as Hubbard models in new parameter regimes. The two approaches raise quite different issues, some of which are identified and discussed.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Fortágh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  2. Treutlein P., Hommelhoff P., Steinmetz T., Hänsch T.W., Reichel J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 20300 (2004)

    Article  Google Scholar 

  3. Deutsch C., Ramirez-Martinez F., Lacroûte C., Reinhard F., Schneider T., Fuchs J.N., Piéchon F., Laloë F., Reichel J., Rosenbusch P.: Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010)

    Article  ADS  Google Scholar 

  4. Whitlock S., Gerritsma R., Fernholz T., Spreeuw R.J.C.: Two-dimensional array of microtraps with atomic shift register on a chip. New J. Phys. 11, 023021 (2009)

    Article  ADS  Google Scholar 

  5. Gerritsma R., Whitlock S., Fernholz T., Schlatter H., Luigjes J.A., Thiele J.U., Goedkoop J.B., Spreeuw R.J.C.: Lattice of microtraps for ultracold atoms based on patterned magnetic films. Phys. Rev. A 76, 033408 (2007)

    Article  ADS  Google Scholar 

  6. Singh M., Volk M., Akulshin A., Sidorov A., McLean R., Hannaford P.: One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J. Phys. B 41, 065301 (2008)

    Article  Google Scholar 

  7. Llorente Garcia I., Darquié B., Curtis E.A., Sinclair C.D.J., Hinds E.A.: Experiments on a videotape atom chip: fragmentation and transport studies. New J. Phys. 12, 093017 (2010)

    Article  ADS  Google Scholar 

  8. Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  9. Lukin M.D., Fleischhauer M., Côté M.R., Duan L.M., Jaksch D., Cirac J.I., Zoller P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  Google Scholar 

  10. Weimer H., Müller M., Lesanovsky I., Zoller P., Büchler H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382 (2010)

    Article  Google Scholar 

  11. Bulata I., Nori F.: Quantum simulators. Nature 326, 108 (2009)

    Google Scholar 

  12. Whitlock S., Ockeloen C.F., Spreeuw R.J.C.: Sub-poissonian atom-number fluctuations by Three-Body Loss in Mesoscopic Ensembles. Phys. Rev. Lett. 104, 120402 (2010)

    Article  ADS  Google Scholar 

  13. Tauschinsky A., Thijssen R.M.T., Whitlock S., van den Heuvell H.B., van Linden H.B., Spreeuw R.J.C.: Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2010)

    Article  ADS  Google Scholar 

  14. Teepen T.F., van Veen A.H.V., van ’t Spijker H., Steenbrink S.W.H.K., van Zuuk A., Heerkens C.Th.H., Wieland M.J., van Druten N.J., Kruit P.: Fabrication and characterization of p-type silicon field-emitter arrays for lithography. J. Vac. Sci. Tech. B 23, 359 (2005)

    Article  Google Scholar 

  15. de Jonge N., van Druten N.J.: Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope. Ultramicroscopy 95, 85 (2002)

    Article  Google Scholar 

  16. Brion E., Mølmer K., Saffman M.: Quantum computing with collective ensembles of multilevel systems quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett. 99, 260501 (2007)

    Article  ADS  Google Scholar 

  17. Müller M., Lesanovsky I. I., Weimer H., Büchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)

    Article  Google Scholar 

  18. Saffman M., Mølmer K.: Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009)

    Article  ADS  Google Scholar 

  19. Heidemann R., Raitzsch U., Bendkowsky V., Butscher B., Löw R., Pfau T.: Rydberg excitation of Bose-Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008)

    Article  ADS  Google Scholar 

  20. Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)

    Article  Google Scholar 

  21. Gaetan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  22. van Ditzhuijzen C.S.E., Koenderink A.F., Hernández J.V., Robicheaux F., Noordam L.D., van Linden H.B., van den Heuvell : Spatially resolved observation of Dipole-Dipole interaction between Rydberg atoms. Phys. Rev. Lett. 100, 243201 (2008)

    Article  ADS  Google Scholar 

  23. Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  24. Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  25. Schmied R., Leibfried D., Spreeuw R.J.C., Whitlock S.: Optimized magnetic lattices for ultracold atomic ensembles. New J. Phys. 12, 103029 (2010)

    Article  ADS  Google Scholar 

  26. Anderson A., Haroche S., Hinds E.A., Jhe W., Meschede D.: Measuring the van der Waals forces between a Rydberg atom and a metallic surface. Phys. Rev. A 37, 3594 (1988)

    Article  ADS  Google Scholar 

  27. Sandoghdar V., Sukenik C.I., Hinds E.A., Haroche S.: Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432 (1992)

    Article  ADS  Google Scholar 

  28. Mohapatra A.K., Jackson T.R., Adams C.S.: Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)

    Article  ADS  Google Scholar 

  29. Weatherill K.J., Pritchard J.D., Abel R.P., Bason M.G., Mohapatra A.K., Adams C.S.: Electromagnetically induced transparency of an interacting cold Rydberg ensemble. J. Phys. B 41, 201002 (2008)

    Article  ADS  Google Scholar 

  30. Obrecht J.M., Wild R.J., Cornell E.A.: Measuring electric fields from surface contaminants with neutral atoms. Phys. Rev. A 75, 062903 (2007)

    Article  ADS  Google Scholar 

  31. Stehle C., Bender H., Jessen F., Zimmermann C., Slama S.: Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons. New J. Phys. 12, 083066 (2010)

    Article  ADS  Google Scholar 

  32. Ockeloen C.F., Tauschinsky A.F., Spreeuw R.J.C., Whitlock S.: Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010)

    Article  ADS  Google Scholar 

  33. Greiner M., Regal C.A., Stewart J.T., Jin D.S.: Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phys. Rev. Lett. 94, 110401 (2005)

    Article  ADS  Google Scholar 

  34. Goncharenko A.V., Wang J.-K., Chang Y.-C.: Electric near-field enhancement of a sharp semi-infinite conical probe: material and cone angle dependence. Phys. Rev. B 74, 235442 (2006)

    Article  ADS  Google Scholar 

  35. Forbes R., Edgcombe C.J., Valdrè U.: Some comments on models for field enhancement. Ultramicroscopy 95, 57 (2003)

    Article  Google Scholar 

  36. Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  37. Gerbier F., Widera A., Fölling S., Mandel O., Gericke T., Bloch I.: Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005)

    Article  ADS  Google Scholar 

  38. Ho T.L., Zhou Q.: Intrinsic heating and cooling in Adiabatic processes for Bosons in optical lattices. Phys. Rev. Lett. 99, 120404 (2007)

    Article  ADS  Google Scholar 

  39. Spielman I.B., Phillips W.D., Porto J.V.: Mott-insulator transition in a two-dimensional atomic bose gas. Phys. Rev. Lett. 98, 080404 (2007)

    Article  ADS  Google Scholar 

  40. Leanhardt A.E., Pasquini T.A., Saba M., Schirotzek A., Shin Y., Kielpinski D., Pritchard D.E., Ketterle W.: Cooling Bose-Einstein condensates below 500 picokelvin. Science 301, 1513 (2003)

    Article  ADS  Google Scholar 

  41. Schmied R., Wesenberg J.H., Leibfried D.: Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 233002 (2009)

    Article  ADS  Google Scholar 

  42. Ghanbari S., Kieu T.D., Sidorov A., Hannaford P.: Permanent magnetic lattices for ultracold atoms and quantum degenerate gases. J. Phys. B 39, 847 (2006)

    Article  ADS  Google Scholar 

  43. Vieu C., Carcenac F., Pépin A., Chen Y., Mejias M., Lebib A., Manin-Ferlazzo L., Couraud L., Launois H.: Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164, 111 (2000)

    Article  ADS  Google Scholar 

  44. Kurth F., Weisheit M., Leistner K., Gemming T., Holzapfel B., Schultz L., Fähler S.: Finite-size effects in highly ordered ultrathin FePt films. Phys. Rev. B 82, 184404 (2010)

    Article  ADS  Google Scholar 

  45. Haller E., Mark M.J., Hart R., Danzl J.G., Reichsöllner L., Melezhik V., Schmelcher P., Nägerl H.-C.: Confinement-induced resonances in low-dimensional quantum systems. Phys. Rev. Lett. 104, 153203 (2010)

    Article  ADS  Google Scholar 

  46. Landragin A., Courtois J.Y., Labeyrie G., Vansteenkiste N., Westbrook C.I., Aspect A.: Measurement of the van der Waals force in an atomic mirror. Phys. Rev. Lett. 77, 1464 (1996)

    Article  ADS  Google Scholar 

  47. Henkel C., Pötting S., Wilkens M.: Loss and heating of particles in small and noisy traps. Appl. Phys. B 69, 379 (1999)

    Article  ADS  Google Scholar 

  48. Henkel C., Pötting S.: Coherent transport of matter waves. Appl. Phys. B 72, 73 (2001)

    Article  ADS  Google Scholar 

  49. Scheel S., Rekdal P.K., Knight P.L., Hinds E.A.: Atomic spin decoherence near conducting and superconducting films. Phys. Rev. A 72, 042901 (2005)

    Article  ADS  Google Scholar 

  50. Lin Y.J., Teper I., Chin C., Vuletic V.: Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004)

    Article  ADS  Google Scholar 

  51. Bakr W.S., Gillen J.I., Peng A., Fölling S., Greiner M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  52. Sherson J.F., Weitenberg C., Endres M., Cheneau M., Bloch I., Kuhr S.: Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  53. Grüner B., Jag M., Stibor A., Visanescu G., Häffner M., Kern D., Günther A., Fortágh J.: Integrated atom detector based on field ionization near carbon nanotubes. Phys. Rev. A 80, 063422 (2009)

    Article  ADS  Google Scholar 

  54. Goodsell A., Ristroph T., Golovchenko J.A., Hau L.V.: Field ionization of cold atoms near the Wall of a single carbon nanotube. Phys. Rev. Lett. 104, 133002 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We wish to thank H.B. van Linden van den Heuvell and R. Schmied for fruitful discussions, and C. Ockeloen, S.Whitlock, and R. Thijssen additionally for their contributions to the experiments. This work is part of the research programme of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)”, which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).”

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL, Amsterdam, The Netherlands

    V. Y. F. Leung, A. Tauschinsky, N. J. van Druten & R. J. C. Spreeuw

Authors
  1. V. Y. F. Leung
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Tauschinsky
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. N. J. van Druten
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. R. J. C. Spreeuw
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to R. J. C. Spreeuw.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Leung, V.Y.F., Tauschinsky, A., van Druten, N.J. et al. Microtrap arrays on magnetic film atom chips for quantum information science. Quantum Inf Process 10, 955 (2011). https://doi.org/10.1007/s11128-011-0295-1

Download citation

  • Received: 01 April 2011

  • Accepted: 23 August 2011

  • Published: 18 September 2011

  • DOI: https://doi.org/10.1007/s11128-011-0295-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Magnetic potential
  • Lattice
  • Microtrap
  • Atom chip
  • Quantum information
  • Rydberg gate
  • Mesoscopic ensemble qubit
  • Sub-optical
  • FePt magnetic film
  • Microscale array
  • Quantum simulator
  • Shift register
  • Single site addressing
  • Nanofabrication
  • Single atom detection
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature