Skip to main content
Log in

Entanglement observation among single mode bosonic field and an atom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the atom-field entanglement by proposing a scheme for nonlocality of the atom-field system via nonlocaling the ladder atomic and field operators by a nonlocal unitary operator. It is shown that the standard coherent states of the constructed nonlocal atom-field quantum system are, as an issue of nonlocality, entangled. On the other hand, by proposing a model Hamiltonian for the interacting atom-field system, the standard entangled coherent states can be generated by the dynamical time evolution of the atom-field system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95–117 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ekert A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  7. Howell J.C., Bennink R.S., Bentley S.J., Boyd R.W.: Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)

    Article  ADS  Google Scholar 

  8. Braunstein S.L., Loock P.V.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MATH  Google Scholar 

  9. Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Guo R., Guo H.: Entanglement of a scattered single photon with an atom. Phys. Rev. A 73, 012103 (2006)

    Article  ADS  Google Scholar 

  11. Volz J., Weber M., Schlenk D., Rosenfeld W., Vrana J., Saucke K.: Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  12. Can M.A., Cakir O., Klyachko A., Shumovsky A.: Persistent entanglement in three-level atomic systems. J. Opt. B Quantum Semiclass. Opt. 6, S13 (2004)

    Article  Google Scholar 

  13. Vitali D., Caizares P., Eschner J., Morigi G.: Time-separated entangled light pulses from a single-atom emitter. New J. Phys. 10, 033025 (2008)

    Article  ADS  Google Scholar 

  14. Rosenfeld W., Hocke F., Henkel F., Krug M., Volz J., Weber M., Weinfurter H.: Towards long-distance atom-photon entanglement. Phys. Rev. Lett. 101, 260403 (2008)

    Article  ADS  Google Scholar 

  15. Cole J.H.: Understanding entanglement sudden death through multipartite entanglement and quantum correlations. J. Phys. A Math. Theor. 43, 135301 (2010)

    Article  ADS  Google Scholar 

  16. Lee S.K.Y., Law C.K.: Analysis of photon-atom entanglement generated by Faraday rotation in a cavity. Phys. Rev. A 73, 053808 (2006)

    Article  ADS  Google Scholar 

  17. Roshan Entezar S.S.: Controllable atomphoton entanglement near a 3D anisotropic photonic band edge. J. Phys. B At. Mol. Opt. Phys. 4, 085503 (2010)

    Article  ADS  Google Scholar 

  18. Altintas F., Eryigit R.: Dynamics of entanglement and Bell-nonlocality for two stochastic qubits with dipole-dipole interaction. J. Phys. A Math. Theor. 43, 415306 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kumar B.: Emergent radiation in an atom-field system at twice-resonance. J. Phys. A Math. Theor. 42, 245307 (2009)

    Article  ADS  Google Scholar 

  20. Bell J.S.: How much larger quantum correlations are than classical ones. Physics (Long Island City, N.Y.) 1, 195 (1964)

    Google Scholar 

  21. Gisin N.: Bell inequality for arbitrary many settings of the analyzers. Phys. Lett. A 154, 201 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  22. Spiridonov V.: Universal superpositions of coherent states and self-similar potentials. Phys. Rev. A 52, 1909–1935 (1995)

    Article  ADS  Google Scholar 

  23. Wang X.G., Sanders B.C., Pan S.H.: Entangled coherent states for systems with SU(2) and SU(1,1) symmetries. J. Phys. A Math. Gen. 33, 7451–7467 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Chakrabarti R., Vasan S.S.: Entanglement via BarutGirardello coherent state for suq(1,1) quantum algebra: bipartite composite system. Phys. Lett. A 312, 287–295 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Behzadi N., Fakhri H.: Entanglement via permutation symmetry and reflection invariance of angular momentum algebra. Eur. Phys. J. D 61, 253–259 (2011)

    Article  ADS  Google Scholar 

  26. Wang X., Sanders B.C.: Multipartite entangled coherent states. Phys. Rev A 65, 012303 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  27. Monroe C., Meekhof D.M., King B.E., Wineland D.J.: A “Schrüdinger Cat” superposition state of an atom. Science 272, 1131 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Gerry C.C.: Generation of Schrüdinger cats and entangled coherent states in the motion of a trapped ion by a dispersive interaction. Phys. Rev. A 55, 2478 (1997)

    Article  ADS  Google Scholar 

  29. Kuzmich A., Bigelow N.P., Mandel L.: Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. 42, 481 (1998)

    Article  ADS  Google Scholar 

  30. Kuzmich A., Mandel L., Janis J., Young Y.E., Ejnisman R., Bigelow N.P.: Quantum nondemolition measurements of collective atomic spin. Phys. Rev. A 60, 2346 (1999)

    Article  ADS  Google Scholar 

  31. Kuzmich A., Mandel L., Bigelow N.P.: Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett. 85, 1594 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Behzadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behzadi, N. Entanglement observation among single mode bosonic field and an atom. Quantum Inf Process 11, 777–785 (2012). https://doi.org/10.1007/s11128-011-0286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0286-2

Keywords

Navigation