Skip to main content
Log in

Majorana representation of symmetric multiqubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As early as 1932, Majorana had proposed that a pure permutation symmetric state of N spin-\({\frac{1}{2}}\) particles can be represented by N spinors, which correspond geometrically to N points on the Bloch sphere. Several decades after its conception, the Majorana representation has recently attracted a great deal of attention in connection with multiparticle entanglement. A novel use of this representation led to the classification of entanglement families of permutation symmetric qubits—based on the number of distinct spinors and their arrangement in constituting the multiqubit state. An elegant approach to explore how correlation information of the whole pure symmetric state gets imprinted in its parts is developed for specific entanglement classes of symmetric states. Moreover, an elegant and simplified method to evaluate geometric measure of entanglement in N-qubit states obeying exchange symmetry has been developed based on the distribution of the constituent Majorana spionors over the unit sphere. Multiparticle entanglement being a key resource in several quantum information processing tasks, its deeper understanding is essential. In this review, we present a detailed description of the Majorana representation of pure symmetric states and its applicability in investigating various aspects of multiparticle entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Sackett C.A. et al.: Experimental entanglement of four particles. Nature (London) 404, 256–259 (2000)

    Article  ADS  Google Scholar 

  • Roos C.F., Riebe M., Häffner H., Hänsel W., Benhelm J., Lancaster G.P.T., Becher C., Schmidt-Kaler F., Blatt R.: Control and measurement of three-qubit entangled states. Science 304, 1478–1480 (2004)

    Article  ADS  Google Scholar 

  • Leibfried D. et al.: Creation of a six-atom ‘Schrodinger Cat’ state. Nature (London) 438, 639–642 (2005)

    Article  ADS  Google Scholar 

  • Sorensen A., Duan L.-M., Cirac J.I., Zoller P.: Many-particle entanglement with Bose-Einstein condensates. Nature (London) 409, 63–66 (2001)

    Article  ADS  Google Scholar 

  • Usha Devi A.R., Prabhu R., Rajagopal A.K.: Characterizing multiparticle entanglement in symmetric N-qubit states via negativity of covariance matrices. Phys. Rev. Lett. 98, 060501-060504 (2007)

    Google Scholar 

  • Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Dicke R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  MATH  Google Scholar 

  • Majorana E.: Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43–50 (1932)

    Article  MATH  Google Scholar 

  • Bloch F., Rabi I.I.: Atoms in variable magnetic fields. Rev. Mod. Phys. 17, 237–244 (1945)

    Article  ADS  Google Scholar 

  • Penrose R.: Shadows of the Mind. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Mäkelä H., Messina A.: N-qubit states as points on the Bloch sphere. Physica Scripta T 140, 014054 (2010)

    Article  ADS  Google Scholar 

  • Dennis M.R.: Canonical representation of spherical functions: Sylvester’s theorem, Maxwell’s multipoles and Majorana’s sphere. J. Phys. A. Math. Gen. 37, 9487–9500 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Swain, J.: The MR of spins and the relation between SU(∞) and SDiff(S 2), hep-th/arxiv:0405004

  • Dennis M.R.: Correlations between Maxwell’s multipoles for Gaussian random functions on the sphere. J. Phys. A. Math.Gen. 38, 1653–1658 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zimba J.: “Anticoherent” spin states via the Majorana representation. EJTP 3, 143–156 (2006)

    MATH  Google Scholar 

  • Bastin T., Krins S., Mathonet P., Godefroid M., Lamata L., Solano E.: Operational families of entanglement classes for symmetric N-qubit states. Phys. Rev. Lett. 103, 070503 (2009)

    Article  ADS  Google Scholar 

  • Bastin, T., Mathonet, P., Solano, E.: Operational entanglement families of symmetric mixed N-qubit states, quant-ph/arxiv:1011.1243

  • Usha Devi, A.R., Sudha, Rajagopal, A.K.: Determining the whole pure symmetric N-qubit state from its parts, quant-ph/arXiv:1003.2450

  • Usha Devi, A.R., Sudha, Rajagopal, A.K.: Interconvertibility and irreducibility of permutation symmetric three qubit pure states, quant-ph/arXiv:1002.2820

  • Markham, D.: Entanglement and symmetry in permutation symmetric states, quant-ph/arxiv: 1001.0343

  • Aulbach M., Markham D., Murao M.: The maximally entangled symmetric state in terms of the geometric measure. New J. Phys. 12, 073025 (2010)

    Article  ADS  Google Scholar 

  • Martin J., Giraud O., Braun P.A., Braun D., Bastin T.: Multiqubit symmetric states with high geometric entanglement. Phys. Rev. A 81, 062347 (2010)

    Article  ADS  Google Scholar 

  • Aulbach, M., Markham, D., Murao, M.: Geometric entanglement of symmetric states and the Majorana representation, quant-ph/arxiv: 1010.4777

  • Shimony A.: Degree of entanglement. Ann. Phys. NY Acad. Sci. 755, 675 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  • Wei T.C., Ericsson M., Goldbart P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  • Rose M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1957)

    MATH  Google Scholar 

  • Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  • Verstraete F., Dehaene J., De Moor B., Verschelde H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • Lamata L., León J., Salgado D., Solano E.: Inductive entanglement classification of four qubits under stochastic local operations and classical communication. Phys. Rev. A 75, 022318 (2007)

    Article  ADS  Google Scholar 

  • Maser, A.A., Wiegner, R., Schilling, U., Thiel, C., von Zanthier, J.: A versatile source of polarization-entangled photons, quant-ph/arXiv:0911.5115

  • Kiesel N., Wieczorek W., Krins S., Bastin T., WeinfurterH. Solano E.: Operational multipartite entanglement classes for symmetric photonic qubit states. Phys. Rev. A 81, 032316 (2010)

    Article  ADS  Google Scholar 

  • Mathonet P., Krins S., Godefroid M., Lamata L., Solano E., Bastin T.: Entanglement equivalence of N-qubit symmetric states. Phys. Rev. A 1, 052315 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  • Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Linden N., Popescu S., Wootters W.K.: Almost every pure state of three qubits is completely determined by its two-particle reduced density matrices. Phys. Rev. Lett. 89, 207901 (2002)

    Article  ADS  Google Scholar 

  • Linden N., Wootters W.K.: The parts determine the whole in a generic pure quantum state. Phys. Rev. Lett. 89, 277906 (2002)

    Article  ADS  Google Scholar 

  • Jones N.S., Linden N.: Parts of quantum states. Phys. Rev. A 71, 012324 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • Walck S.N., Lyons D.W.: Only n-qubit Greenberger-Horne-Zeilinger states are undetermined by their reduced density matrices. Phys. Rev. Lett. 100, 050501 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Walck S.N., Lyons D.W.: Only n-qubit Greenberger-Horne-Zeilinger states contain n-partite information. Phys. Rev. A 79, 032326 (2009)

    Article  ADS  Google Scholar 

  • Parashar P., Rana S.: N-qubit W states are determined by their bipartite marginals. Phys. Rev. A 80, 012319 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Parashar P., Rana S.: Reducible correlations in Dicke states. J. Phys. A. Math. Theor. 42, 462003 (2009)

    Article  ADS  Google Scholar 

  • Coleman A.J.: Structure of fermion density matrices. Rev. Mod. Phys. 35, 668 (1963)

    Article  ADS  Google Scholar 

  • Colmenero F., Pérezdel Valle C., Valdemoro C.: Approximating q-order reduced density matrices in terms of the lower order ones I general relations. Phys. Rev. A 47, 971–978 (1993)

    Article  ADS  Google Scholar 

  • Nakatsuji H., Yasuda K.: Direct determination of the quantum-mechanical density matrix using the density equation. Phys. Rev. Lett. 76, 1039 (1996)

    Article  ADS  Google Scholar 

  • Yasuda K., Nakatsuji H.: Direct determination of the quantum-mechanical density matrix using the density equation II. Phys. Rev. A 56, 2648–2657 (1997)

    Article  ADS  Google Scholar 

  • Mazziotti D.A.: Contracted Schrödinger equation: determining quantum energies and two-particle density matrices without wave functions. Phys. Rev. A 57, 4219–4234 (1998)

    Article  ADS  Google Scholar 

  • Mazziotti D.A.: Pursuit of N-representability for the contracted Schrödinger equation through density-matrix reconstruction. Phys. Rev. A 60, 3618–3626 (1999)

    Article  ADS  Google Scholar 

  • Linden, N., Popescu, S., Schumacher, B., Westmoreland, M.: Reversibility of local transformations of multiparticle entanglement Preprint quant-ph/9912039

  • Bennett C.H., Popescu S., Rohrlich C., Smolin J.A., Thapliyal A.V.: Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A 63, 012307 (2000)

    Article  ADS  Google Scholar 

  • Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  • Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  • Rajagopal A.K., Rendell R.: Robust and fragile entanglement of three qubits: relation to permutation symmetry. Phys. Rev. A 65, 032328 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  • Plenio M., Virmani S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1–51 (2007)

    MathSciNet  MATH  Google Scholar 

  • Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hayashi M., Markham D., Murao M., Owari M., Virmani S.: Entanglement of multiparty-stabilizer, symmetric and antisymmetric states. Phys. Rev. A 77, 012104 (2008)

    Article  ADS  Google Scholar 

  • Hayashi M., Markham D., Murao M., Owari M., Virmani S.: The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 50, 122104 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Wei T.-C., Severini S.: Matrix permanent and quantum entanglement of permutation invariant states. J. Math. Phys. 51, 092203 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  • Hübener R., Kleinmann M., Wei T.-C., Guillén C.G., Gühne O.: Geometric measure of entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Arecchi F.T., Courtens E., Gilmore G., Thomas H.: Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211 (1972)

    Article  ADS  Google Scholar 

  • Ruskai M.B.: N completeness, N representability, and Geminal expansions. Phys. Rev. A 5, 1336 (1972)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Usha Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, A.R.U., Sudha & Rajagopal, A.K. Majorana representation of symmetric multiqubit states. Quantum Inf Process 11, 685–710 (2012). https://doi.org/10.1007/s11128-011-0280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0280-8

Keywords

Navigation