Quantum lithography: status of the field


This contribution provides an analysis of progress in the field of quantum lithography. We review the conceptual foundations of this idea and the status of research aimed at implementing this idea in the laboratory. The selection of a highly sensitive recording material that functions by means of multiphoton absorption seems crucial to the success of the proposal of quantum lithography. This review thus devotes considerable attention to these materials considerations.

This is a preview of subscription content, log in to check access.


  1. 1.

    Boto N., Kok P., Abrams D.S., Braunstein S.L., Williams C.P., Dowling J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)

    ADS  Article  Google Scholar 

  2. 2.

    Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

    ADS  Article  Google Scholar 

  3. 3.

    Fonseca E.J.S., Monken C.H., Pádua S.: Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett. 82, 2868–2871 (1999)

    ADS  Article  Google Scholar 

  4. 4.

    Edamatsu K., Shimizu R., Itoh T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    Angelo M.D., Chekhova M.V., Shih Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)

    ADS  Article  Google Scholar 

  6. 6.

    Dowling J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    Agarwal G.S., Boyd R.W., Nagasako E.M., Bentley S.J.: Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’. Phys. Rev. Lett. 86, 1389 (2001)

    ADS  Article  Google Scholar 

  8. 8.

    Nagasako E.M., Bentley S.J., Boyd R.W., Agarwal G.S.: Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers. Phys. Rev. A 64, 043802 (2001)

    ADS  Article  Google Scholar 

  9. 9.

    Nagasako E.M., Bentley S.J., Boyd R.W., Agarwal G.S.: Parametric downconversion vs. optical parametric amplification: a comparison of their quantum statistics. J. Mod. Opt. 49, 529–537 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    Agarwal G.S., Chan K.W., Boyd R.W., Cable H., Dowling J.P.: Quantum states of light produced by a high-gain optical parametric amplifier for use in quantum lithography. J. Opt. Soc. Am. B 24, 270 (2007)

    ADS  Article  Google Scholar 

  11. 11.

    Glasser R.T., Cable H., Dowling J.P., De Martini F., Sciarrino F., Vitelli C.: Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology. Phys. Rev. A 78, 012339 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    Cable H., Vyas R., Singh S., Dowling J.P.: An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography. New J. Phys. 11, 113055 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    Sciarrino F., Vitelli C., De Martini F., Glasser R., Cable H., Dowling J.P.: Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography. Phys. Rev. A 77, 012324 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    Gea-Banacloche J.: Two-photon absorption of nonclassical light. Phys. Rev. Lett. 62, 1603 (1989)

    ADS  Article  Google Scholar 

  15. 15.

    Javanainen J., Gould P.L.: Linear intensity dependence of a two-photon transition rate. Phys. Rev. A 41, 5088 (1990)

    ADS  Article  Google Scholar 

  16. 16.

    Georgiades N.Ph., Polzik E.S., Edamatsu K., Kimble H.J.: Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426 (1995)

    ADS  Article  Google Scholar 

  17. 17.

    Steuernagel O.: On the concentration behaviour of entangled photons. J. Opt. B: Quantum Semiclassical Opt. 6, S606 (2004)

    ADS  Article  Google Scholar 

  18. 18.

    Tsang M.: Relationship between resolution enhancement and multiphoton absorption ratein quantum lithography. Phys. Rev. A 75, 043813 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    Tsang M.: Fundamental quantum limit to the multiphoton absorption rate for monochromatic light. Phys. Rev. Lett. 101, 033602 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    Kothe, C., Bjork, G., Inoue, S., Bourennane, M.: arxiv quant-phy 1106.2250v1

  21. 21.

    Peeters W.H., Renema J.J., van Exter M.P.: Engineering of two-photon spatial quantum correlations behind a double slit. Phys. Rev. A 79, 043817 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    Plick W.N., Wildfeuer C.F., Anisimov P.N., Dowling J.P.: Optimizing the multiphoton absorption properties of maximally path-entangled number states. Phys. Rev. A 80, 063825 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    Tsang M.: Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    Hemmer R.P., Muthukrishnan A., Scully M.O., Zubairy M.S.: Quantum lithography with classical light. Phys. Rev. Lett. 96, 163603 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    Kok P., Boto A.N., Abrams D.S., Williams C.P., Braunstein S.L., Dowling J.P.: Quantum interferometric optical lithography: towards arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001)

    ADS  Article  Google Scholar 

  26. 26.

    Bjork G., Sanchez-Soto L.L., Soderholm J.: Entangled-state lithography: tailoring any pattern with a single state. Phys. Rev. Lett. 86, 4516–4519 (2001)

    ADS  Article  Google Scholar 

  27. 27.

    Davis C.C., Atia W.A., Gungor A., Mazzoni D.L., Pilevar S., Smolyaninov I.I.: Scanning near-field optical microscopy and lithography with bare tapered optical fibers. Laser Phys. 7, 243–256 (1997)

    Google Scholar 

  28. 28.

    Strekalov D.V., Stowe M.C., Chekhova M.V. et al.: Two-photon processes in faint biphoton fields. J. Mod. Opt. 49, 2349–2364 (2002)

    ADS  Article  Google Scholar 

  29. 29.

    Dayan B., Pe’er A., Friesem A.A. et al.: Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005)

    ADS  Article  Google Scholar 

  30. 30.

    Sensarn S., Ali-Khan I., Yin G.Y. et al.: Resonant sum frequency generation with time-energy entangled photons. Phys. Rev. Lett. 102, 053602 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    Bentley S.J., Boyd R.W.: Nonlinear optical lithography with ultra-high sub-Rayleigh resolution. Opt. Express 12, 5735 (2004)

    ADS  Article  Google Scholar 

  32. 32.

    Boyd R.W., Bentley S.J.: Recent progress in quantum and nonlinear optical lithography. J. Mod. Opt. 53, 713 (2006)

    ADS  Article  Google Scholar 

  33. 33.

    Chang H.J., Shin H., O’Sullivan-Hale M.N., Boyd R.W.: Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber. J. Mod. Opt. 53, 2271 (2006)

    ADS  MATH  Article  Google Scholar 

  34. 34.

    See, for example, the data sheets for Type-D material of STX Aprilis, Inc. www.stxaprilis.com

  35. 35.

    Maruo S., Nakamura O., Kawata S.: Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997)

    ADS  Article  Google Scholar 

  36. 36.

    Kawata S., Sun H.-B., Tanaka T., Takada K.: Finer features for functional microdevices. Nature 412, 697 (2001)

    ADS  Article  Google Scholar 

  37. 37.

    von Freymann G., Ledermann A., Thiel M., Staude I., Essig S., Busch K., Wegener M.: Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010)

    Article  Google Scholar 

  38. 38.

    Data sheets for SU-8 are available from one of its commercial suppliers. Microchem, at www.microchem.com

  39. 39.

    Schaffer D.B., Brodeurm A., Garcia J.F., Mazur E.: Micromachinging bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)

    ADS  Article  Google Scholar 

  40. 40.

    Shimotsuma Y., Kazansky P.G., Qiu J., Hirao K.: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)

    ADS  Article  Google Scholar 

  41. 41.

    Rajeev P.P., Gertsvolf M., Simova E., Hnatovsky C., Taylor R.S., Bhardwaj V.R., Rayner D.M., Corkum P.B.: Memory in nonlinear ionization of transparent solids. Phys. Rev. Lett. 97, 253001 (2006)

    ADS  Article  Google Scholar 

  42. 42.

    Rajeev P.P., Gertsvolf M., Corkum P.B., Rayner D.M.: Field dependent avalanche ionization rates in dielectrics. Phys. Rev. Lett. 102, 083001 (2009)

    ADS  Article  Google Scholar 

  43. 43.

    Park S.H., Lim T.W., Yang D.-Y., Cho N.C., Lee K.-S.: Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl. Phys. Lett. 89, 173133 (2006)

    ADS  Article  Google Scholar 

  44. 44.

    Farsari M., Ovsianikov A., Vamvakaki M., Sakellari I., Gray D., Chichkov B.N., Fotakis C.: Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Appl. Phys. A 93, 11–15 (2008)

    ADS  Article  Google Scholar 

  45. 45.

    He G.S., Tan L-S., Zheng Q., Prasad P.N.: Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev. 108, 1245–1330 (2008)

    Article  Google Scholar 

  46. 46.

    Larson D.R., Zipfel W.R., Williams R.M., Clark S.W., Bruchez M.P., Wise F.W., Webb W.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2008)

    ADS  Article  Google Scholar 

  47. 47.

    Cohanoschi I., Hernández F.E.: Surface plasmon enhancement of two- and three-photon absorption of hoechst 33 258 dye in activated gold colloid solution. J. Phys. Chem. B 2005(109), 14506–14512 (2005)

    Article  Google Scholar 

  48. 48.

    Cohanoschi I., Yao S., Belfield K.D., Hernández F.E.: Effect of the concentration of organic dyes on their surface plasmon enhanced two-photon absorption cross section using activated Au nanoparticles. J. Appl. Phys. 101, 086112 (2007)

    ADS  Article  Google Scholar 

  49. 49.

    Dolgaleva K., Shin H., Boyd R.W.: Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility. Phys. Rev. Lett. 103, 113902 (2007)

    ADS  Article  Google Scholar 

  50. 50.

    Lee D.-I., Goodson T. III.: Entangled photon absorption in an organic porphyrin dendrimer. J. Phys. Chem. B Lett. 110, 25582–25585 (2006)

    Google Scholar 

  51. 51.

    Harpham M.R., Suzer O., Ma C.-Q., Bauerle P., Goodson T. III.: Thiophene dendrimers as entangled photon sensor materials. J. Am. Chem. Soc. 131, 973–979 (2009)

    Article  Google Scholar 

  52. 52.

    Fei H.-B., Jost B.M., Popescu S., Saleh B.E.A., Teich M.C.: Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78, 1679 (1997)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Robert W. Boyd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boyd, R.W., Dowling, J.P. Quantum lithography: status of the field. Quantum Inf Process 11, 891–901 (2012). https://doi.org/10.1007/s11128-011-0253-y

Download citation


  • Recording Material
  • Entangle Photon
  • Optical Lithography
  • Multiphoton Absorption
  • Direct Laser Writing