Advertisement

Quantum Information Processing

, Volume 11, Issue 4, pp 891–901 | Cite as

Quantum lithography: status of the field

  • Robert W. Boyd
  • Jonathan P. Dowling
Article

Abstract

This contribution provides an analysis of progress in the field of quantum lithography. We review the conceptual foundations of this idea and the status of research aimed at implementing this idea in the laboratory. The selection of a highly sensitive recording material that functions by means of multiphoton absorption seems crucial to the success of the proposal of quantum lithography. This review thus devotes considerable attention to these materials considerations.

Keywords

Recording Material Entangle Photon Optical Lithography Multiphoton Absorption Direct Laser Writing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boto N., Kok P., Abrams D.S., Braunstein S.L., Williams C.P., Dowling J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Fonseca E.J.S., Monken C.H., Pádua S.: Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett. 82, 2868–2871 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Edamatsu K., Shimizu R., Itoh T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Angelo M.D., Chekhova M.V., Shih Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Dowling J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Agarwal G.S., Boyd R.W., Nagasako E.M., Bentley S.J.: Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’. Phys. Rev. Lett. 86, 1389 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Nagasako E.M., Bentley S.J., Boyd R.W., Agarwal G.S.: Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers. Phys. Rev. A 64, 043802 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Nagasako E.M., Bentley S.J., Boyd R.W., Agarwal G.S.: Parametric downconversion vs. optical parametric amplification: a comparison of their quantum statistics. J. Mod. Opt. 49, 529–537 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Agarwal G.S., Chan K.W., Boyd R.W., Cable H., Dowling J.P.: Quantum states of light produced by a high-gain optical parametric amplifier for use in quantum lithography. J. Opt. Soc. Am. B 24, 270 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Glasser R.T., Cable H., Dowling J.P., De Martini F., Sciarrino F., Vitelli C.: Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology. Phys. Rev. A 78, 012339 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Cable H., Vyas R., Singh S., Dowling J.P.: An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography. New J. Phys. 11, 113055 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Sciarrino F., Vitelli C., De Martini F., Glasser R., Cable H., Dowling J.P.: Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography. Phys. Rev. A 77, 012324 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Gea-Banacloche J.: Two-photon absorption of nonclassical light. Phys. Rev. Lett. 62, 1603 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Javanainen J., Gould P.L.: Linear intensity dependence of a two-photon transition rate. Phys. Rev. A 41, 5088 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    Georgiades N.Ph., Polzik E.S., Edamatsu K., Kimble H.J.: Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Steuernagel O.: On the concentration behaviour of entangled photons. J. Opt. B: Quantum Semiclassical Opt. 6, S606 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Tsang M.: Relationship between resolution enhancement and multiphoton absorption ratein quantum lithography. Phys. Rev. A 75, 043813 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Tsang M.: Fundamental quantum limit to the multiphoton absorption rate for monochromatic light. Phys. Rev. Lett. 101, 033602 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Kothe, C., Bjork, G., Inoue, S., Bourennane, M.: arxiv quant-phy 1106.2250v1Google Scholar
  21. 21.
    Peeters W.H., Renema J.J., van Exter M.P.: Engineering of two-photon spatial quantum correlations behind a double slit. Phys. Rev. A 79, 043817 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Plick W.N., Wildfeuer C.F., Anisimov P.N., Dowling J.P.: Optimizing the multiphoton absorption properties of maximally path-entangled number states. Phys. Rev. A 80, 063825 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Tsang M.: Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Hemmer R.P., Muthukrishnan A., Scully M.O., Zubairy M.S.: Quantum lithography with classical light. Phys. Rev. Lett. 96, 163603 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Kok P., Boto A.N., Abrams D.S., Williams C.P., Braunstein S.L., Dowling J.P.: Quantum interferometric optical lithography: towards arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Bjork G., Sanchez-Soto L.L., Soderholm J.: Entangled-state lithography: tailoring any pattern with a single state. Phys. Rev. Lett. 86, 4516–4519 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Davis C.C., Atia W.A., Gungor A., Mazzoni D.L., Pilevar S., Smolyaninov I.I.: Scanning near-field optical microscopy and lithography with bare tapered optical fibers. Laser Phys. 7, 243–256 (1997)Google Scholar
  28. 28.
    Strekalov D.V., Stowe M.C., Chekhova M.V. et al.: Two-photon processes in faint biphoton fields. J. Mod. Opt. 49, 2349–2364 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Dayan B., Pe’er A., Friesem A.A. et al.: Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Sensarn S., Ali-Khan I., Yin G.Y. et al.: Resonant sum frequency generation with time-energy entangled photons. Phys. Rev. Lett. 102, 053602 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Bentley S.J., Boyd R.W.: Nonlinear optical lithography with ultra-high sub-Rayleigh resolution. Opt. Express 12, 5735 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Boyd R.W., Bentley S.J.: Recent progress in quantum and nonlinear optical lithography. J. Mod. Opt. 53, 713 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Chang H.J., Shin H., O’Sullivan-Hale M.N., Boyd R.W.: Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber. J. Mod. Opt. 53, 2271 (2006)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    See, for example, the data sheets for Type-D material of STX Aprilis, Inc. www.stxaprilis.com
  35. 35.
    Maruo S., Nakamura O., Kawata S.: Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    Kawata S., Sun H.-B., Tanaka T., Takada K.: Finer features for functional microdevices. Nature 412, 697 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    von Freymann G., Ledermann A., Thiel M., Staude I., Essig S., Busch K., Wegener M.: Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010)CrossRefGoogle Scholar
  38. 38.
    Data sheets for SU-8 are available from one of its commercial suppliers. Microchem, at www.microchem.com
  39. 39.
    Schaffer D.B., Brodeurm A., Garcia J.F., Mazur E.: Micromachinging bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Shimotsuma Y., Kazansky P.G., Qiu J., Hirao K.: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Rajeev P.P., Gertsvolf M., Simova E., Hnatovsky C., Taylor R.S., Bhardwaj V.R., Rayner D.M., Corkum P.B.: Memory in nonlinear ionization of transparent solids. Phys. Rev. Lett. 97, 253001 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Rajeev P.P., Gertsvolf M., Corkum P.B., Rayner D.M.: Field dependent avalanche ionization rates in dielectrics. Phys. Rev. Lett. 102, 083001 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Park S.H., Lim T.W., Yang D.-Y., Cho N.C., Lee K.-S.: Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl. Phys. Lett. 89, 173133 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    Farsari M., Ovsianikov A., Vamvakaki M., Sakellari I., Gray D., Chichkov B.N., Fotakis C.: Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Appl. Phys. A 93, 11–15 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    He G.S., Tan L-S., Zheng Q., Prasad P.N.: Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev. 108, 1245–1330 (2008)CrossRefGoogle Scholar
  46. 46.
    Larson D.R., Zipfel W.R., Williams R.M., Clark S.W., Bruchez M.P., Wise F.W., Webb W.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Cohanoschi I., Hernández F.E.: Surface plasmon enhancement of two- and three-photon absorption of hoechst 33 258 dye in activated gold colloid solution. J. Phys. Chem. B 2005(109), 14506–14512 (2005)CrossRefGoogle Scholar
  48. 48.
    Cohanoschi I., Yao S., Belfield K.D., Hernández F.E.: Effect of the concentration of organic dyes on their surface plasmon enhanced two-photon absorption cross section using activated Au nanoparticles. J. Appl. Phys. 101, 086112 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Dolgaleva K., Shin H., Boyd R.W.: Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility. Phys. Rev. Lett. 103, 113902 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Lee D.-I., Goodson T. III.: Entangled photon absorption in an organic porphyrin dendrimer. J. Phys. Chem. B Lett. 110, 25582–25585 (2006)Google Scholar
  51. 51.
    Harpham M.R., Suzer O., Ma C.-Q., Bauerle P., Goodson T. III.: Thiophene dendrimers as entangled photon sensor materials. J. Am. Chem. Soc. 131, 973–979 (2009)CrossRefGoogle Scholar
  52. 52.
    Fei H.-B., Jost B.M., Popescu S., Saleh B.E.A., Teich M.C.: Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78, 1679 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Optics and Department of Physics and AstronomyUniversity of RochesterRochesterUSA
  2. 2.Department of Physics and School of Information Technology and EngineeringUniversity of OttawaOttawaCanada
  3. 3.Department of Physics and Astronomy, Hearne Institute for Theoretical PhysicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations