Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons

Abstract

We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple simmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Greiner M., et al.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature (London) 415, 39 (2002)

    Article  ADS  Google Scholar 

  2. 2

    Hartmann M.J., Brandão F.G.S.L., Plenio M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008) and references therein

    Article  Google Scholar 

  3. 3

    Aspuru-Guzik A., et al.: Simulated quantum computation of molecular energies & towards quantum chemistry on a quantum computer. Science 309, 1704 (2005)

    Article  ADS  Google Scholar 

  4. 4

    Lanyon B.P., et al.: Towards quantum chemistry on a quantum computer. Nature Chem. 2, 106 (2009)

    Article  ADS  Google Scholar 

  5. 5

    Garay L.J., et al.: Sonic analog of gravitational black holes in Bose-Einstein condensates and methods for detecting acceleration radiation in a Bose-Einstein condensate and numerical observation of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates. Phys. Rev. Lett. 85, 4643 (2000)

    Article  ADS  Google Scholar 

  6. 6

    Retzker A., et al.: ODouble well potentials and quantum phase transitions in ion traps. Phys. Rev. Lett. 101, 110402 (2008)

    Article  ADS  Google Scholar 

  7. 7

    Carusotto I., et al.: Numerical observation of Hawking radiation from acoustic black holes in atomic Bosef́bEinstein condensates. New J. Phys. 10, 103001 (2008)

    Article  ADS  Google Scholar 

  8. 8

    Chang D.E., et al.: Crystallization of strongly interacting photons in a nonlinear optical fibre. Nature Phys. 4, 884 (2008)

    Article  ADS  Google Scholar 

  9. 9

    Vaishnav J.Y., Clark C.W.: Observing zitterbewegung with ultracold toms & zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 100, 153002 (2008)

    Article  ADS  Google Scholar 

  10. 10

    Schliemann J., Loss D., Westervelt R.M.: Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005)

    Article  ADS  Google Scholar 

  11. 11

    Gerritsma R., et al.: Quantum simulation of the Dirac equation. Nature (London) 463, 68 (2010)

    Article  ADS  Google Scholar 

  12. 12

    Feynman R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  13. 13

    http://www.wired.com/science/discoveries/news/2007/02/72734

  14. 14

    Buluta I., Nori F.: Quantum simulators. Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  15. 15

    Halzen F., Martin A.D.: Quarks & Leptons: An Introductory Course in Modern Particle Physics. Wiley, New York (1984)

    Google Scholar 

  16. 16

    Griffiths D.: Introduction to Elementary Particles. Wiley, New York (1987)

    Google Scholar 

  17. 17

    Meshkov S., Levinson C.A., Lepkin H.J.: Verification of the tenfold assignment of the Baryon resonances & comparison of a new SU 3 prediction with experiment & Meson-Baryon scattering in the Quark Model. Phys. Rev. Lett. 10, 361 (1963)

    Article  ADS  Google Scholar 

  18. 18

    Meshkov S., Snow G.A., Yodh G.B.: Comparison of a new SU–3 prediction with experiment. Phys. Rev. Lett. 12, 87 (1964)

    Article  ADS  Google Scholar 

  19. 19

    Sastry C.V., Misra S.P.: Meson-Baryon scattering in the Quark Model. Phys. Rev. D 1, 166 (1970)

    Article  ADS  Google Scholar 

  20. 20

    Morpurgo G.: Smallness of gluon coupling to constituent quarks in baryons and validity of nonrelativistic quark model. Phys. Rev. D 46, 4068 (1992)

    Article  ADS  Google Scholar 

  21. 21

    Gell-Mann M.: A schematic model of Baryons and Mesons. Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  22. 22

    Zweig, G.: Identifying phases of quantum many-body systems that are universal for quantum computation, CERN Reports No. TH-401 and TH-412, 1964 (unpublished)

  23. 23

    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. 24

    Shende V., Bullock S., Markov I.: Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aid Design 25, 1000 (2006)

    Article  Google Scholar 

  25. 25

    Barenco A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  26. 26

    Tseng C.H., et al.: Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer & quantum simulation of a system with competing two- and three-body interactions. Phys. Rev. A 61, 012302 (1999)

    Article  ADS  Google Scholar 

  27. 27

    Peng X., et al.: Phys. Rev. Lett.: Quantum simulation of a system with competing two-and three-body interactions 103, 140501 (2009)

  28. 28

    Pachos J.K., Plenio M.B.: Three-spin interactions in optical lattices and criticality in cluster hamiltonians & effective three-body interactions in triangular optical lattices. Phys. Rev. Lett. 93, 056402 (2004)

    Article  ADS  Google Scholar 

  29. 29

    Pachos, J.K., Rico, E.: Phys. Rev. A: Effective Three-Body Interactions in Traangular Optical Lattices 70, 053620 (2004)

  30. 30

    Briegel H.J., et al.: Measurement-based quantum computation. Nature Phys. 5, 19 (2009)

    Article  Google Scholar 

  31. 31

    Tame M.S., et al.: Natural three-qubit interactions in one-way quantum computing. Phys. Rev. A 73, 022309 (2006)

    Article  ADS  Google Scholar 

  32. 32

    Doherty A.C., Bartlett S.D.: Identifying phases of quantum many-body systems that are universal for quantum computation. Phys. Rev. Lett. 103, 020506 (2009)

    Article  ADS  Google Scholar 

  33. 33

    Here \({|001\rangle_{ijk}, |{010\rangle}_{ijk}}\) and \({|{100\rangle}_{ijk}}\) stand for a single photon in the spatial mode i,j and k respectively (i  =  1,4, j  =  2,5, k  =  3,6)

  34. 34

    Reck M., et al.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  35. 35

    Kalasuwan, P., et al.: A simple scheme for expanding photonic cluster states for quantum information & deterministic controlled-NOT gate for single-photon two-qubit quantum logic arXiv:1003.4291

  36. 36

    Fiorentino M., Wong F.N.C.: Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints. Phys. Rev. Lett. 93, 070502 (2004)

    Article  ADS  Google Scholar 

  37. 37

    Lu, C.-Y., et al.: Nature Phys.: Experiment entanglement of six photons in graph states. Nature Phys.: Experiment entanglement of six photons in graph states 3, 91 (2007)

  38. 38

    Wieczorek W., et al.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

    Article  ADS  Google Scholar 

  39. 39

    Prevedel R., et al.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009)

    Article  ADS  Google Scholar 

  40. 40

    Radmark M., et al.: State-independent quantum contextuality with single photons. Phys. Rev. Lett. 103, 150501 (2009)

    Article  ADS  Google Scholar 

  41. 41

    Vallone G. et al.: Six-qubit two-photon hyperentangled cluster states: Characterization and application to quantum computation. Phys. Rev. A 81, 052301 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando L. Semião.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Semião, F.L., Paternostro, M. Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons. Quantum Inf Process 11, 67–75 (2012). https://doi.org/10.1007/s11128-011-0232-3

Download citation

Keywords

  • Quantum simulator
  • Quark model