Skip to main content
Log in

A low complexity scheme for entanglement distributor buses

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

For technological purposes and theoretical curiosity, it is very interesting to have a building block that produces a considerable amount of entanglement between on-demand sites through a simple control of a few sites. Here, we consider permanently-coupled spin networks and study entanglement generation between qubit pairs to find low-complexity structures capable of generating considerable entanglement between various qubit pairs. We find that in axially symmetric networks the generated entanglement between some qubit pairs is rather larger than generic networks. We show that in uniformly-coupled spin rings each pair can be considerably entangled through controlling suitable vertices. To set the location of controlling-vertices, we observe that the symmetry has to be broken for a definite time. To achieve this, a magnetic flux can be applied to break symmetry via Aharonov-Bohm effect. Such a set up can serve as an efficient entanglement distributor bus in which each vertex-pair can be efficiently entangled through exciting only one fixed vertex and controlling the evolution time. The low-complexity of this scheme makes it attractive for use in nanoscale quantum information processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wooters W.K.: Teleporting an unknown quantum state via dual 61 classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  PubMed  MathSciNet  Google Scholar 

  2. Cirac J.I., Ekert A.K., Huelga S.F., Macchiavello C.: Dynamics of momentum entanglement in lowest-order QED. Phys. Rev. A 59, 4249 (1999)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  3. Grover, L.K.: Quantum Telecomputation, quantph/9704012

  4. Bennett C.H., Wiesner S.J.: Mixed-state entanglement and quantum error correction. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MATH  PubMed  MathSciNet  Google Scholar 

  5. Osborne T.J., Verstraete F.: Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Plastina F., Apollaro T.J.G.: Local control of entanglement in a spin chain. Phys. Rev. Lett. 99, 177210 (2007)

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Benjamin S.C., Bose S.: Quantum computing with an always-on Heisenberg interaction. Phys. Rev. Lett. 90, 247901 (2003)

    Article  ADS  PubMed  CAS  Google Scholar 

  8. DiVincenzo D.P., Bacon D., Kempe J., Burkard G., Whaley K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Bose S., Jin B.-Q., Korepin V.E.: Entanglement in the XY spin chain. Phys. Rev. A 72, 022345 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. D’Amico I.: Quantum dot-based quantum buses for quantum computer hardware architecture. Microelectronics Journal 37, 1440 (2006)

    Article  Google Scholar 

  12. Duan L.-M., Demler E., Lukin M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Benjamin S.C., Ardavan A., Briggs G.A.D., Britz D.A., Gunlycke D., Jefferson J., Jones M.A.G., Leigh D.F., Lovett B., Khlobystov A.N, Lyon S.A., Morton J.J.L., Porfyrakis K., Sambrook M.R., Tyryshkin A.M.: Towards fullerene-based quantum computer. J. Phys. Condens. Matter 18, S867–S883 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Gladchenko S., Olaya D., Dupont-Ferrier E., Doujot B., Ioffe L.B., Gershenson M.E.: Superconducting nanocircuits for topologically protected qubits. Nat. Phys. 5, 48–53 (2009)

    Article  CAS  Google Scholar 

  16. Bayer M., Hawrylak P., Hinzer K., Fafard S., Korkusinski M., Wasilewski Z.R., Stern O., Forchel A.: Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001)

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Murao M., Jonathan D., Plenio M.B., Vedral V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Koike S., Takahashi H., Yonezawa H., Takei N., Braunstein S.L., Aoki T., Furusawa A.: Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett. 96, 060504 (2006)

    Article  ADS  PubMed  CAS  Google Scholar 

  19. Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  PubMed  CAS  MathSciNet  Google Scholar 

  21. Peierls R.E.: Theory of diamagnetism of conduction electrons. Z. Phys. 80, 763 (1933)

    Article  ADS  MATH  CAS  Google Scholar 

  22. Byers N., Yang C.N.: Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 7, 46 (1961)

    Article  ADS  Google Scholar 

  23. Shastry B.S., Sutherland B.: Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard rings. Phys. Rev. Lett. 65, 243 (1990)

    Article  ADS  MATH  PubMed  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghojavand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghojavand, M. A low complexity scheme for entanglement distributor buses. Quantum Inf Process 10, 519–532 (2011). https://doi.org/10.1007/s11128-010-0214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0214-x

Keywords

Navigation