Skip to main content
Log in

A flexible representation of quantum images for polynomial preparation, image compression, and processing operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript


A Flexible Representation of Quantum Images (FRQI) is proposed to provide a representation for images on quantum computers in the form of a normalized state which captures information about colors and their corresponding positions in the images. A constructive polynomial preparation for the FRQI state from an initial state, an algorithm for quantum image compression (QIC), and processing operations for quantum images are combined to build the whole process for quantum image processing on FRQI. The simulation experiments on FRQI include storing, retrieving of images and a detection of a line in binary images by applying quantum Fourier transform as a processing operation. The compression ratios of QIC between groups of same color positions range from 68.75 to 90.63% on single digit images and 6.67–31.62% on the Lena image. The FRQI provides a foundation not only to express images but also to explore theoretical and practical aspects of image processing on quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (quip). Proc. Appl. Imagery Pattern Recognit. Workshop, 39–44 (2003)

  3. Brayton R.K., Sangiovanni-Vincentelli A., McMullen C., Hachtel G.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Dordrecht (1984)

    Book  MATH  Google Scholar 

  4. Caraiman, S., Manta, V.I.: New applications of quantum algorithms to computer graphics: the quantum random sample consensus algorithm. Proc. 6th ACM Conf. Comput. Frontier, Ischia, Italy. ACM, New York, 81–88 (2009)

  5. Curtis D., Meyer D.A.: Towards quantum template matching. Proc. SPIE 5161, 134–141 (2004)

    Article  ADS  Google Scholar 

  6. Feynman R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  7. Fijany, A., Williams, C.P.: Quantum wavelet transform: fast algorithm and complete circuits. arXiv:quant-ph/9809004 (1998)

  8. Grover, L.: A fast quantum mechanical algorithm for database search. Proc. 28th Ann. ACM Symp. Theory Comput. (STOC 1996), ACM, New York, 212–219 (1996)

  9. Klappenecker, A., Rötteler, M.: Discrete cosine transforms on quantum computers. Proc. IEEER8-EURASIP Symp. on Image and Signal Processing and Analysis (ISPA01), Pula, Croatia, 464–468 (2001)

  10. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  11. Lomont, C.: Quantum convolution and quantum correlation algorithms are physically impossible. arXiv:quant-ph/0309070 (2003)

  12. Lomont, C.: Quantum circuit identities. arXiv:quant-ph/0307111 (2003)

  13. Maslov D., Dueck G.W., Miller D.M., Camille N.: Quantum circuit simplification and level compaction. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 27(3), 436–444 (2008)

    Article  Google Scholar 

  14. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  15. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Ann. Symp. Found. Comput. Sci. IEEE Computer Soc. Press, Los Almitos, CA. 124–134 (1994)

  16. Tseng, C.C., Hwang, T.M.: Quantum circuit design of 8 × 8 discrete cosine transforms using its fast computation flow graph. ISCAS 2005. vol. I. 828–831 (2005)

  17. Venegas-Andraca, S.E., Ball, J.L.: Storing Images in engtangled quantum systems. arXiv:quant-ph/0402085 (2003)

  18. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. vol. 5105, 137–147 (2003). doi:10.1117/12.485960

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Phuc Q. Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, P.Q., Dong, F. & Hirota, K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf Process 10, 63–84 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: