Unitary and non-unitary manipulations of qubit-bath entanglement: non-Markov qubit cooling

  • Guy Bensky
  • Goren Gordon
  • David Gelbwaser-Klimovsky
  • D. D. Bhaktavatsala Rao
  • Noam Erez
  • Gershon Kurizki


Initialization of quantum logic operations makes it imperative to cool down the information-carrying qubits as much and as fast as possible, so as to purify their state, or at least their ensemble average. Yet, the limit on the speed of existing cooling schemes is either the duration of the qubit equilibration with its bath or the decay time of an auxiliary state to one of the qubit states. Here we show that highly-frequent phase-shifts or measurements of the state of thermalized qubits can be designed to affect the qubit-bath entanglement so that the qubits undergo cooling, well before they re-equilibrate with the bath and without resorting to auxiliary states. These processes can be used in principally novel, advantageous, cooling schemes to assist quantum logic operations.


Quantum cooling Non-Markovian processes Quantum thermodynamic control Qubit initialization Quantum information processing 


03.65.Yz 05.70.Ln 03.65.Ta 03.65.Xp 


  1. 1.
    Spohn H.: Entropy production for quantum dynamical semigroups. J. Math. Phys 19, 1227 (1978)MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Alicki R.: The quantum open system as a model of the heat engine. J. Phys. A 12, L103 (1979)CrossRefADSGoogle Scholar
  3. 3.
    Landau L.D., Lifshitz E.M.: Statistical Physics 3rd edn, part 1. Pergamon Press, New York (1980)Google Scholar
  4. 4.
    Jarzynski C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett 78, 2690 (1997)CrossRefADSGoogle Scholar
  5. 5.
    Lindblad, G.: Non-equilibrium Entropy and Irreversibility, vol. 5 of Mathematical Physics Studies. Reidel, Dordrecht (1983)Google Scholar
  6. 6.
    Jeffries C.D.: Dynamic Nuclear Orientation. Interscience, New York (1963)Google Scholar
  7. 7.
    Gelman D., Kosloff R.: Simulating dissipative phenomena with a random phase thermal wavefunctions, high temperature application of the Surrogate Hamiltonian approach. Chem. Phys. Lett 381(1), 129–138 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Valenzuela S.O., Oliver W.D., Berns D.M., Berggren K.K., Levitov L.S., Orlando T.P.: Microwave- induced cooling of a superconducting qubit. Science 314(5805), 1589–1592 (2006)CrossRefPubMedADSGoogle Scholar
  9. 9.
    Wineland D.J., Drullinger R.E., Walls F.L.: Radiation-Pressure Cooling of Bound Resonant Absorbers. Phys. Rev. Lett. 40(25), 1639–1642 (1978)CrossRefADSGoogle Scholar
  10. 10.
    Neuhauser W., Hohenstatt M., Toschek P., Dehmelt H.: Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41(4), 233–236 (1978)CrossRefADSGoogle Scholar
  11. 11.
    Monroe C., Meekhof D.M., King B.E., Jefferts S.R., Itano W.M., Wineland D.J., Gould P.: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75(22), 4011–4014 (1995)CrossRefPubMedADSGoogle Scholar
  12. 12.
    Schulman L.S., Gaveau B.: Ratcheting up energy by means of measurement. Phys. Rev. Lett 97, 240405 (2006)CrossRefPubMedADSGoogle Scholar
  13. 13.
    Piilo J., Maniscalco S., Suominen K.A.: Quantum brownian motion for periodic coupling to an ohmic bath. Phys. Rev. A 75, 32105 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Erez N., Gordon G., Nest M., Kurizki G.: Thermodynamic control by frequent quantum measurements. Nature 452, 724 (2008)CrossRefPubMedADSGoogle Scholar
  15. 15.
    Scully, M.O.: Extracting work from a single thermal bath via quantum negentropy. Phys. Rev. Lett 87(22), 220601 Nov (2001)Google Scholar
  16. 16.
    Braginsky V.B., Khalili F.Y.: Quantum Measurement. Cambridge University Press, London (1995)Google Scholar
  17. 17.
    Kofman A.G., Kurizki G.: Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 93, 130406 (2004)CrossRefPubMedADSGoogle Scholar
  18. 18.
    Goren G., Erez N., Kurizki G.: Universal dynamical decoherence control of noisy single-and multi-qubit systems. J. Phys. B 40, S75 (2007)CrossRefADSGoogle Scholar
  19. 19.
    Cohen-Tannoudji C., Dupont-Roc J., Grynberg G.: Atom-Photon Interactions. Wiley, New York (1992)Google Scholar
  20. 20.
    Breuer H.-P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  21. 21.
    Misra B., Sudarshan E.C.G.: Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Kofman A.G., Kurizki G.: Acceleration of quantum decay processes by frequent observations. Nature (London) 405, 546–550 (2000)CrossRefADSGoogle Scholar
  23. 23.
    Facchi, P., Pascazio, S.: Quantum zeno and inverse quantum zeno effects. In: Progress in Optics, vol.42, p.147. Elsevier, Amsterdam (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Guy Bensky
    • 1
  • Goren Gordon
    • 1
  • David Gelbwaser-Klimovsky
    • 1
  • D. D. Bhaktavatsala Rao
    • 1
  • Noam Erez
    • 1
  • Gershon Kurizki
    • 1
  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations