Skip to main content
Log in

Reservoir cross-over in entanglement dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  PubMed  ADS  Google Scholar 

  2. Yu T., Eberly J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  3. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Stenholm S., Suominen K.-A.: Quantum Approach to Informatics. Wiley, NJ (2005)

    Book  MATH  Google Scholar 

  5. Haroche S., Raimond J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. OUP, Oxford (2006)

    MATH  Google Scholar 

  6. Bellomo B., Franco R.L., Compagno G.: Non- Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Ficek Z., Tanaś R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

  8. Bellomo B., Franco R.L., Maniscalco S., Compagno G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302(R) (2008)

    ADS  Google Scholar 

  9. Mazzola L., Maniscalco S., Piilo J., Suominen K.-A., Garraway B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  10. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.-A.: Exact dynamics of entanglement and entropy in structured environments. arXiv:0904.2857.

  11. Paz J.P., Roncaglia A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  PubMed  ADS  Google Scholar 

  12. Almeida M.P. et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Laurat J. et al.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Harkonen, K., Plastina, F., Maniscalco, S.: Dicke model and environment-induced entanglement in ion-cavity QED. arXiv:0907.0778.

  15. Garraway B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290–2303 (1997)

    Article  ADS  Google Scholar 

  16. Breuer H.-P., Petruccione F.: The Theory of Open Quantum Systems. OUP, Oxford (2002)

    MATH  Google Scholar 

  17. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  CAS  ADS  Google Scholar 

  18. Häffner H. et al.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

    Article  PubMed  ADS  Google Scholar 

  19. Blatt R., Wineland D.: Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Moehring D.L. et al.: Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Guthöhrlein G.R. et al.: A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001)

    Article  PubMed  ADS  Google Scholar 

  22. Wallraff A. et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Majer J. et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Sillanpää M.A. et al.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 443–447 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Garraway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzola, L., Maniscalco, S., Suominen, KA. et al. Reservoir cross-over in entanglement dynamics. Quantum Inf Process 8, 577–585 (2009). https://doi.org/10.1007/s11128-009-0135-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0135-8

Keywords

PACS

Navigation