Skip to main content
Log in

Simple schemes for quantum information processing with W-type entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Simple schemes are proposed for implementing deterministic teleportation, superdense coding, and quantum information splitting with W-type entangled states. The physical realization of these schemes should be much simpler than previous ones due to the assistance of an auxiliary particle. We illustrate the ideas in cavity quantum electrodynamics. The important features of our schemes can also be demonstrated in other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan J.W., Bouwmeester D., Daniell M. et al.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Wang X.W., Shan Y.G., Xia L.X. et al.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7–11 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502-1–060502-4 (2006)

    Article  ADS  Google Scholar 

  5. Wang X.W., Yang G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301-1–024301-4 (2008)

    ADS  Google Scholar 

  6. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314-1–062314-4 (2000)

    ADS  Google Scholar 

  7. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Häffner H., Hänsel W., Roos C.F. et al.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

    Article  PubMed  ADS  Google Scholar 

  9. Wang X.W., Yang G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315–106231511 (2009)

    Article  ADS  Google Scholar 

  10. Liu Q., Zhang W.H., Ye L.: Scheme to implement scheme 1 → M economical phase-covariant telecloning via cavity QED. Chin. Phys. Lett. 25, 1947–1949 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Wang X.W., Su Y.H., Yang G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319–330 (2009)

    Article  Google Scholar 

  12. Cao H.J., Song H.S.: Quantum secure direct communication scheme using a W state and teleportation. Phys. Scr. 74, 572–575 (2006)

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  13. Cao H.J., Song H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)

    Article  ADS  Google Scholar 

  14. Liu J., Liu Y.M., Cao H.J. et al.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652–2655 (2006)

    Article  ADS  Google Scholar 

  15. Dong L., Xiu X.M., Gao Y.J. et al.: Improvement on quantum secure direct communication with W state in noisy channel. Commun. Theor. Phys. 51, 232–234 (2009)

    Article  CAS  MATH  Google Scholar 

  16. Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320-1–062320-5 (2006)

    Article  ADS  Google Scholar 

  17. Zheng S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303-1–054303-4 (2006)

    ADS  Google Scholar 

  18. Joo J., Park Y.J., Oh S. et al.: Quantum teleportation via a W state. New J. Phys. 5, 136.1–136.9 (2003)

    Article  Google Scholar 

  19. Shi B.S., Tomita A.: Teleportation of an unknown state by W state. Phys. Lett. A 296, 161–164 (2002)

    ADS  CAS  MathSciNet  MATH  Google Scholar 

  20. Li L., Qiu D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A 40, 10871–10885 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Peng Z.H., Zou J., Liu X.J.: Scheme for implementing efficient quantum information processing with multiqubit W-class states in cavity QED. J. Phys. B 41, 065505-1–065505-7 (2008)

    Google Scholar 

  22. Wang Y.H., Song H.S.: Preparation of partially entangled W state and deterministic multi-controlled teleportation. Opt. Commun. 281, 489–493 (2008)

    ADS  CAS  Google Scholar 

  23. Zhang Z.J., Cheung C.Y.: Minimal classical communication and measurement complexity for quantum information splitting. J. Phys. B 41, 015503-1–015503-6 (2008)

    ADS  Google Scholar 

  24. Pan G.X., Liu Y.M., Wang Z.Y. et al.: Tripartite splitting arbitrary 2-qubit quantum information by using two asymmetric W states. Commun. Theor. Phys. 51, 227–231 (2009)

    Article  CAS  MATH  Google Scholar 

  25. Liu Y.M., Yin X.F., Zhang W. et al.: Tripartition of arbitrary single-qubit quantum information by using asymmetric four-qubit W state. Int. J. Quantum Inf. 7, 349–355 (2009)

    Article  MATH  Google Scholar 

  26. Bennett C.H., Wiesner J.S.: Communication via one- and two-particle operators on Einstein– Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  PubMed  ADS  MathSciNet  MATH  Google Scholar 

  27. Schuck C., Huber G., Kurtsiefer C. et al.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501-1–190501-4 (2006)

    Article  ADS  Google Scholar 

  28. Riebe M., Häffner H., Roos C.F. et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Wang X.W., Liu X., Fang M.F.: One-step discrimination scheme on N-particle Greenberger–Horne–Zeilinger bases. Chin. Phys. 16, 1215–1219 (2007)

    Article  ADS  Google Scholar 

  30. Bennett C.H., Brassard G., Crepeau C. et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  PubMed  ADS  MathSciNet  MATH  Google Scholar 

  31. Braunstein S.L.: Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  32. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  33. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  CAS  Google Scholar 

  34. Wootters W.K., Zurek W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  CAS  Google Scholar 

  35. Zheng S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404-1–230404-4 (2001)

    ADS  Google Scholar 

  36. Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  37. Osnaghi S., Bertet P., Auffeves A. et al.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902-1–037902-4 (2001)

    Article  ADS  Google Scholar 

  38. Gleyzes S., Kuhr S., Guerlin C. et al.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  39. Wang X.: Method for generating a new class of multipartite entangled state in cavity quantum electrodynamics. Opt. Commun. 282, 1052–1055 (2009)

    Article  ADS  CAS  Google Scholar 

  40. Wang X.W., Yang G.J.: Schemes for preparing atomic qubit cluster states in cavity QED. Opt. Commun. 281, 5282–5285 (2008)

    Article  ADS  CAS  Google Scholar 

  41. Guo G.P., Li C.F., Li J., Guo G.C.: Scheme for the preparation of multiparticle entanglement in cavity QED. Phys. Rev. A 65, 042102-1–042102-4 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XW., Yang, GJ., Su, YH. et al. Simple schemes for quantum information processing with W-type entanglement. Quantum Inf Process 8, 431–442 (2009). https://doi.org/10.1007/s11128-009-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0119-8

Keywords

PACS

Navigation