Skip to main content
Log in

Protecting quantum information with entanglement and noisy optical modes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We incorporate active and passive quantum error-correcting techniques to protect a set of optical information modes of a continuous-variable quantum information system. Our method uses ancilla modes, entangled modes, and gauge modes (modes in a mixed state) to help correct errors on a set of information modes. A linear-optical encoding circuit consisting of offline squeezers, passive optical devices, feedforward control, conditional modulation, and homodyne measurements performs the encoding. The result is that we extend the entanglement-assisted operator stabilizer formalism for discrete variables to continuous-variable quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, S.A., Klappenecker, A.: Subsystem code constructions. In: Proceedings of the IEEE International Symposium on Information Theory (arXiv:0712.4321), pp. 369–373 (2008)

  2. Ban M.: Quantum dense coding via a two-mode squeezed-vacuum state. J. Opt. B: Quantum Semiclass. Opt. 1, L1–L9 (1999)

    Article  MathSciNet  Google Scholar 

  3. Barnes, R.: Stabilizer codes for continuous-variable quantum error correction. arXiv:quant-ph/0405064 (2004)

  4. Bény, C., Kempf, A., Kribs, D.W.: Quantum error correction on infinite-dimensional hilbert spaces. arXiv:0811.0421 (2008)

  5. Braunstein S.L.: Error correction for continuous quantum variables. Phys. Rev. Let. 80(18), 4084 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Braunstein S.L.: Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Braunstein S.L.: Squeezing as an irreducible resource. Phys. Rev. A 71(5), 055801 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Braunstein S.L., Kimble H.J.: Teleportation of continuous quantum variables. Phys. Rev. Let. 80, 869–872 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Braunstein S.L., Kimble H.J.: Dense coding for continuous variables. Phys. Rev. A 61, 042, 302 (2000)

    Article  MathSciNet  Google Scholar 

  10. Braunstein S.L., van Loock P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  Google Scholar 

  11. Braunstein, S.L., Pati, A. (eds.): Quantum Information with Continuous Variables. Springer (2003)

  12. Brun, T., Devetak, I., Hsieh, M.H.: General entanglement-assisted quantum error-correcting codes. In: IEEE International Symposium on Information Theory, pp. 2101–2105 (2007)

  13. Brun, T.A., Devetak, I., Hsieh, M.H.: Catalytic quantum error correction. arXiv:quant-ph/0608027 (2006)

  14. Brun T.A., Devetak I., Hsieh M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  15. Calderbank A., Rains E., Shor P., Sloane N.: Quantum error correction via codes over gf(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Let. 78(3), 405–408 (1997). doi:10.1103/PhysRevLett.78.405

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  17. Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996). doi:10.1103/PhysRevA.54.1098

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Filip R., Marek P., Andersen U.L.: Measurement-induced continuous-variable quantum interactions. Phys. Rev. A 71(4), 042308 (2005)

    Article  ADS  Google Scholar 

  19. Furusawa A., Srensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institue of Technology (1997)

  21. Gottesman D., Kitaev A., Preskill J.: Encoding a qubit in an oscillator. Phys. Rev. A 64(1), 012, 310 (2001). doi:10.1103/PhysRevA.64.012310

    Article  Google Scholar 

  22. Hsieh M.H., Devetak I., Brun T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76(6), 062313 (2007). doi:10.1103/PhysRevA.76.062313

    Article  ADS  Google Scholar 

  23. Knill E., Laflamme R., Viola L.: Theory of quantum error correction for general noise. Phys. Rev. Let. 84(11), 2525–2528 (2000). doi:10.1103/PhysRevLett.84.2525

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  24. Kribs D., Laflamme R., Poulin D.: Unified and generalized approach to quantum error correction. Phys. Rev. Let. 94(18), 180501 (2005). doi:10.1103/PhysRevLett.94.180501

    Article  ADS  Google Scholar 

  25. Kribs D.W., Laflamme R., Poulin D., Lesosky M.: Operator quantum error correction. Quant. Inf. Comp. 6, 383–399 (2006)

    MathSciNet  Google Scholar 

  26. Kribs D.W., Spekkens R.W.: Quantum error-correcting subsystems are unitarily recoverable subsystems. Phys. Rev. A 74(4), 042329 (2006). doi:10.1103/PhysRevA.74.042329

    Article  ADS  Google Scholar 

  27. Li X., Pan Q., Jing J., Zhang J., Xie C., Peng K.: Quantum dense coding exploiting a bright einstein-podolsky-rosen beam. Phys. Rev. Let. 88(4), 047, 904 (2002). doi:10.1103/PhysRevLett.88.047904

    Google Scholar 

  28. Lidar D.A., Chuang I.L., Whaley K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Let. 81(12), 2594–2597 (1998). doi:10.1103/PhysRevLett.81.2594

    Article  ADS  CAS  Google Scholar 

  29. Lloyd S., Slotine J.J.E.: Analog quantum error correction. Phys. Rev. Let. 80(18), 4088–4091 (1998). doi:10.1103/PhysRevLett.80.4088

    Article  ADS  CAS  Google Scholar 

  30. Mizuno J., Wakui K., Furusawa A., Sasaki M.: Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A 71(1), 012304 (2005)

    Article  ADS  Google Scholar 

  31. Nielsen M.A., Poulin D.: Algebraic and information-theoretic conditions for operator quantum error correction. Phys. Rev. A 75(6), 064304 (2007). doi:10.1103/PhysRevA.75.064304

    Article  ADS  MathSciNet  Google Scholar 

  32. Niset J., Andersen U.L., Cerf N.J.: Experimentally feasible quantum erasure-correcting code for continuous variables. Phys. Rev. Let. 101(13), 130503 (2008). doi:10.1103/PhysRevLett.101.130503

    Article  ADS  CAS  Google Scholar 

  33. Poulin D.: Stabilizer formalism for operator quantum error correction. Phys. Rev. Let. 95(23), 230504 (2005). doi:10.1103/PhysRevLett.95.230504

    Article  ADS  Google Scholar 

  34. Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995). doi:10.1103/PhysRevA.52.R2493

    Article  PubMed  ADS  CAS  Google Scholar 

  35. Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Let. 77(5), 793–797 (1996). doi:10.1103/PhysRevLett.77.793

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  36. Vaidman L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473–1476 (1994). doi:10.1103/PhysRevA.49.1473

    Article  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  37. Wilde, M.M., Brun, T.A.: Entanglement-assisted quantum convolutional coding. arXiv:0712.2223 (2007)

  38. Wilde M.M., Brun T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064,302 (2008)

    Google Scholar 

  39. Wilde M.M., Brun T.A., Dowling J.P., Lee H.: Coherent communication with linear optics. Phys. Rev. A 77, 022,321 (2007)

    Google Scholar 

  40. Wilde M.M., Krovi H., Brun T.A.: Coherent communication with continuous quantum variables. Phys. Rev. A 75(6), 060303 (2007). doi:10.1103/PhysRevA.75.060303

    Article  ADS  MathSciNet  Google Scholar 

  41. Wilde, M.M., Krovi, H., Brun, T.A.: Convolutional entanglement distillation. arXiv:0708.3699 (2007)

  42. Wilde M.M., Krovi H., Brun T.A.: Entanglement-assisted quantum error correction with linear optics. Phys. Rev. A 76, 052,308 (2007)

    Article  MathSciNet  Google Scholar 

  43. Yoshikawa J.I., Hayashi T., Akiyama T., Takei N., Huck A., Andersen U.L., Furusawa A.: Demonstration of deterministic and high fidelity squeezing of quantum information. Phys. Rev. A 76(6), 060301 (2007). doi:10.1103/PhysRevA.76.060301

    Article  ADS  Google Scholar 

  44. Yoshikawa J.I., Miwa Y., Huck A., Andersen U.L., van Loock P., Furusawa A.: Demonstration of a quantum nondemolition sum gate. Phys. Rev. Let. 101(25), 250501 (2008). doi:10.1103/PhysRevLett.101.250501

    Article  ADS  Google Scholar 

  45. Zanardi P., Rasetti M.: Error avoiding quantum codes. Mod. Phys. Lett. B 11, 1085–1093 (1997)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  46. Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Let. 79(17), 3306–3309 (1997). doi:10.1103/PhysRevLett.79.3306

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Wilde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, M.M., Brun, T.A. Protecting quantum information with entanglement and noisy optical modes. Quantum Inf Process 8, 401–413 (2009). https://doi.org/10.1007/s11128-009-0117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0117-x

Keywords

PACS

Navigation