Quantum Information Processing

, Volume 9, Issue 2, pp 143–169 | Cite as

Coexistence of qubit effects

Article

Abstract

Two quantum events, represented by positive operators (effects), are coexistent if they can occur as possible outcomes in a single measurement scheme. Equivalently, the corresponding effects are coexistent if and only if they are contained in the ranges of a single (joint) observable. Here we give several equivalent characterizations of coexistent pairs of qubit effects. We also establish the equivalence between our results and those obtained independently by other authors. Our approach makes explicit use of the Minkowski space geometry inherent in the four-dimensional real vector space of selfadjoint operators in a two-dimensional complex Hilbert space.

Keywords

Qubit Effect Joint measurability Coexistence Unsharp observable 

PACS

03.65.Ta 03.67.-a 02.30.Tb 02.40.Ft 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Werner R.: Optimal cloning of pure states. Phys. Rev. A 58, 1827–1832 (1998)CrossRefADSGoogle Scholar
  2. 2.
    D’Ariano, G.M., Macchiavello, C., Sacchi, M.F.: Quantum cloning optimal for joint measurements. quant-ph/0009080 (2000)Google Scholar
  3. 3.
    D’Ariano G.M., Macchiavello C., Sacchi M.F.: Joint measurements via quantum cloning. J. Opt. B: Quantum Semiclassical Opt. 3, 44–50 (2001)CrossRefADSGoogle Scholar
  4. 4.
    Brougham T., Andersson E., Barnett S.M.: Cloning and joint measurements of incompatible components of spin. Phys. Rev. A 73, 062319/1–062319/7 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Ferraro A., Paris M.G.A.: Joint measurements on qubits and cloning of observables. Open Sys. Inf. Dyn. 14, 149–157 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Busch P., Heinonen T., Lahti P.J.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Busch P., Shilladay C.R.: Complementarity and uncertainty in MachZehnder interferometry and beyond. Phys. Rep. 435, 1–31 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Busch P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33, 2253–2261 (1986)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Busch P., Shilladay C.R.: Uncertainty reconciles complementarity with joint measurability. Phys. Rev. A 68, 034102 (2003)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Busch, P., Heinonen, T.: Approximate joint measurements of qubit observables. Qu. Inf. Comp. 8:0797–0818 (2008). Also available at arXiv:quant-ph/0706.1415v2Google Scholar
  11. 11.
    Liu, N.-L., Li, L., Yu, S., Chen, Z.-B.: Complementarity enforced by joint measurability of unsharp observables. arXiv:0712.3653v1 (2007)Google Scholar
  12. 12.
    Stano P., Reitzner D., Heinosaari T.: Coexistence of qubit effects. Phys. Rev. A 78, 012315 (2008)CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Yu, S., Liu, N.-L., Li, L., Oh, C.H.: Joint measurement of two unsharp observables of a qubit. arXiv:0805.1538 (2008)Google Scholar
  14. 14.
    Ludwig G.: Deutung des Begriffs “physikalische Theorie" und axiomatische Grundlegung der Hilbertraumstruktur durch Hauptsätze des Messens, Lecture Notes in Physics, vol. 4. Springer-Verlag, Berlin (1970)Google Scholar
  15. 15.
    Busch, P.: On the sharpness of an effect. arXiv:math-ph/0706.3532 (2007)Google Scholar
  16. 16.
    Busch, P.: On the sharpness and bias of quantum effects. Found. Phys. doi:10.1007/s10701-009-9287-8 (2009)

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK
  2. 2.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations