Skip to main content
Log in

Weak continuous measurements of multiqubits systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this review we summarize our recent experiments on the investigation on superconducting qubits. Instead of strong projective measurement used by other groups in their first pioneering experiments we have proposed and realized a weak continuous readout which belongs to the class of quantum non-demolition measurements. Moreover, our scheme enables to measure a superconducting qubit at the so called sweet (or magic) point where a qubit is in a superposition of two classical states and its sensitivity to external noise is minimized. In this scheme, which is widely used nowadays, the superconducting oscillator coupled to superconducting qubit is used as a detector of the qubit’s state. Such system is analogue to a system of a single atom interacting with photons in a cavity, which allows to study quantum electrodynamics in artificial macroscopic systems. Pushing this analogy we demonstrate Sisyphus cooling and amplification caused by energy exchange between an oscillator and a flux qubit. Using the Sisyphus effect we show consistency between the adiabatic weak continuous measurement in the ground state and the spectroscopic measurement. This allows us to characterize the more complicated system of coupled qubits by making use of the same method. We have realized and studied fixed ferromagnetic, antiferromagnetic as well as tunable qubit–qubit coupling. We argue that ground state measurements can be used for characterization of entangled states in coupled flux qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makhlin Yu., Schön G., Shnirman A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  2. You J.Q., Nori F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  3. Wendin G., Shumeiko V.S.: Superconducting quantum circuits, qubits and computing. In: Rieth, M., Schommers, W.(eds) Handbook of Theoretical and Computational Nanotechnology, vol. 3, pp. 223. American Scientific Publishers, Los Angeles (2006)

    Google Scholar 

  4. Braginsky V.B., Khalili F.Ya.: Quantum Measurement. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  5. Audretsch J., Mensky M.: Continuous fuzzy measurement of energy for a two-level system. Phys. Rev. A 56, 44 (1997) and references therein

    Article  ADS  Google Scholar 

  6. Korotkov A.N., Averin D.V.: Continuous weak measurement of quantum coherent oscillations. Phys. Rev. B 64, 165310 (2001)

    Article  ADS  Google Scholar 

  7. Il’ichev E., Oukhanski N., Izmalkov A., Wagner Th., Grajcar M., Meyer H.-G., Smirnov A.Yu., Brink A.M., Amin M.H.S., Zagoskin A.M.: Continuous monitoring of Rabi oscillations in a Josephson flux qubit. Phys. Rev. Lett. 91, 097906 (2003)

    Article  ADS  Google Scholar 

  8. Mooij J.E., Orlando T.P., Levitor L.S., Tian L., Wal C.H., Lloyd S.: Josephson persistent-current qubit. Science 285, 1036 (1999)

    Article  Google Scholar 

  9. Il’ichev E., Smirnov A.Yu., Grajcar M., Izmalkov A., Born D., Oukhanski N., Wagner Th., Krech W., Meyer H.-G., Zagoskin A.: Radio-frequency method for investigation of quantum properties of superconducting structures. Fiz. Nizk. Temp. 30, 823 (2004) [Low Temp. Phys. 30, 620 (2004)]

    Google Scholar 

  10. Wallraff A., Schuster D.I., Blais A., Frunzio L., Huang R.-S., Majer J., Kumar S., Girvin S.M., Schoelkopf R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  11. Grajcar M., Izmalkov A., Il’ichev E., Wagner Th., Oukhanski N., Hübner U., May T., Zhilyaev I., Hoenig H.E., Greenberg Ya.S., Shnyrkov V.I., Born D., Krech W., Meyer H.-G., van den Brink, A.M., Amin M.H.S.: Low-frequency measurement of the tunneling amplitude in a flux qubit. Phys. Rev. B. 69, 060501(R) (2004)

  12. Lupascu A., Verwijs C.J.M., Schouten R.N., Harmans C.J.P.M., Mooij J.E.: Nondestructive readout for a superconducting flux qubit. Phys. Rev. Lett. 93, 177006 (2004)

    Article  ADS  Google Scholar 

  13. Greenberg Ya.S., Izmalkov A., Grajcar M., Il’ichev E., Krech W., Meyer H.-G., Amin M.H.S., Brink A.M.: Low-frequency characterization of quantum tunneling in flux qubits. Phys. Rev. B 66, 214525 (2002)

    Article  ADS  Google Scholar 

  14. Nakamura Y., Pashkin Yu.A., Tsai J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 (1999)

    Article  ADS  Google Scholar 

  15. van der Wal C. H., ter Haar A.C.J., Wilhelm F.K., Schouten R.N., Harmans C.J.P.M., Orlando T.P., Lloyd S., Mooij J.E.: Quantum superposition of macroscopic persistent-current states. Science 290, 773 (2000)

    Article  ADS  Google Scholar 

  16. Friedman J.R., Patel V., Chen W., Tolpygo S.K., Lukens J.E.: Quantum superposition of distinct macroscopic states. Nature 406, 43 (2000)

    Article  ADS  Google Scholar 

  17. Orlando T.P., Mooij J.E., Tian L., Wal C.H., Levitov L.S., Lloyd S., Mazo J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  18. Izmalkov A., Grajcar M., Il’ichev E., Oukhanski N., Wagner Th., Meyer H.-G., Krech W., Amin M.H.S., Brink A.M., Zagoskin A.M.: Observation of macroscopic Landau–Zener transitions in a superconducting device. Europhys. Lett. 65, 844 (2004)

    Article  ADS  Google Scholar 

  19. The tunneling splitting of the qubit can be reduced by its coupling to an enviroment, see e.g. S. Chakravarty, and S. Kivelson, Photoinduced Macroscopic Quantum Tunneling in Superconducting Interference Devices, Phys. Rev. Lett. 50, 1811 (1983)

    Google Scholar 

  20. Hauss J., Fedorov A., Hutter C., Shnirman A., Schön G.: Single-qubit lasing and cooling at the Rabi frequency. Phys. Rev. Lett. 100, 037003 (2008)

    Article  ADS  Google Scholar 

  21. Born D., Shnyrkov V.I., Krech W., Wagner Th., Il’ichev E., Grajcar M., Hübner U., Meyer H.-G.: Reading out the state inductively and microwave spectroscopy of an interferometer-type charge qubit. Phys. Rev. B 70, 180501(R) (2004)

    Article  ADS  Google Scholar 

  22. Shnyrkov V.I., Wagner Th., Born D., Shevchenko S.N., Krech W., Omelyanchouk A.N., Il’ichev E., Meyer H.-G.: Multiphoton transitions between energy levels in a phase-biased Cooper-pair box. Phys. Rev. B 73, 024506 (2006)

    Article  ADS  Google Scholar 

  23. Grajcar M., Ploeg S.H., Izmalkov A., Il’ichev E., Meyer H.-G., Fedorov A., Shnirman A., Schön G.: Sisyphus cooling and amplification by a superconducting qubit. Nature Phys. 4, 612 (2008)

    Article  Google Scholar 

  24. Quan H.T., Liu Y.-x., Sun C.P., Nori F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Astafiev O., Inomata K., Niskanen A.O., Yamamoto T., Pashkin Yu.A., Nakamura Y., Tsai J.S.: Single artificial-atom lasing. Nature 449, 588 (2007)

    Article  ADS  Google Scholar 

  26. Shevchenko S.N.: Impedance measurement technique for quantum systems. Eur. Phys. J. B. 61, 187 (2008)

    Article  ADS  Google Scholar 

  27. Izmalkov A., Ploeg S.H., Shevchenko S.N., Grajcar M., Il’ichev E., Hübner U., Omelyanchouk A.N., Meyer H.-G.: Consistency of ground state and spectroscopic measurements on flux qubits. Phys. Rev. Lett. 101, 017003 (2008)

    Article  ADS  Google Scholar 

  28. Oliver W.D., Yu Y., Lee J.C., Berggren K.K., Levitov L.S., Orlando T.P.: Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653 (2005)

    Article  ADS  Google Scholar 

  29. Sillanpää M., Lehtinen T., Paila A., Makhlin Yu., Hakonen P.: Continuous-time monitoring of Landau–Zener interference in a Cooper-pair box. Phys. Rev. Lett. {\bf 96uml;, 187002 (2006)

    Article  ADS  Google Scholar 

  30. Shytov A.V., Ivanov D.A., Feigel’man M.V.: Landau–Zener interferometry for qubits. Eur. Phys. J. B. 36, 263 (2003)

    Article  ADS  Google Scholar 

  31. Ashhab S., Johansson J.R., Zagoskin A.M., Nori F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)

    Article  ADS  Google Scholar 

  32. Makhlin Y., Schön G., Shnirman A.: Josephson-junction qubits with controlled couplings. Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

  33. Majer J.B., Paauw F.G., ter Haar A.C., Harmans C.J., Mooij J.E.: Spectroscopy on two coupled superconducting flux qubits. Phys. Rev. Lett. 94, 090501 (2005)

    Article  ADS  Google Scholar 

  34. You J.Q., Nakamura Y., Nori F.: Fast two-bit operations in inductively coupled flux qubits. Phys. Rev. B 71, 024532 (2005)

    Article  ADS  Google Scholar 

  35. Levitov, L.S., Orlando, T.P., Majer, J.B., Mooij, J.E.: Quantum spin chains and Majorana states in arrays of coupled qubits. cond-mat/0108266 (2001)

  36. Izmalkov A., Grajcar M., Il’ichev E., Wagner Th., Meyer H.-G., Smirnov A.Yu., Amin M.H., van den Brink A.M., Zagoskin A.M.: Evidence for entangled states of two coupled flux qubits. Phys. Rev. Lett. 93, 037003 (2004)

    Article  ADS  Google Scholar 

  37. Grajcar M., Izmalkov A., Ploeg S.H., Linzen S., Il’ichev E., Wagner Th., Hübner U., Meyer H.-G., van den Brink A.M., Uchaikin S., Zagoskin A.M.: Direct Josephson coupling between superconducting flux qubits. Phys. Rev. B 72, 020503 (2005)

    Article  ADS  Google Scholar 

  38. Grajcar M., Izmalkov A., van der Ploeg S.H., Linzen S., Plecenik T., Wagner Th., Hübner U., Il’ichev E., Meyer H.-G., Smirnov A.Yu., Love Peter J., van den Brink A.M., Amin M.H., Uchaikin S., Zagoskin A.M.: Four-qubit device with mixed couplings. Phys. Rev. Lett. 96, 047006 (2006)

    Article  ADS  Google Scholar 

  39. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  Google Scholar 

  40. Filippov T.V., Tolpygo S.K., Mannik J., Lukens J.E.: Tunable transformer for qubits based on flux states. IEEE Trans. Appl. Supercond. 13, 1005 (2003)

    Article  Google Scholar 

  41. Averin D.V., Bruder C.: Variable electrostatic transformer: controllable coupling of two charge qubits. Phys. Rev. Lett. 91, 57003 (2003)

    Article  ADS  Google Scholar 

  42. Kim M.D., Hong J.: Coupling of Josephson current qubits using a connecting loop. Phys. Rev. B 70, 184525 (2004)

    Article  ADS  Google Scholar 

  43. Plourde B.L.T., Zhang J., Whaley K.B., Wilhelm F.K., Robertson T.L., Hime T., Linzen S., Reichardt P.A., Wu C.-E., Clarke J.: Entangling flux qubits with a bipolar dynamic inductance. Phys. Rev. B 70, 140501 (2004)

    Article  ADS  Google Scholar 

  44. Castellano M.G., Chiarello F., Leoni R., Simeone D., Torrioli G., Cosmelli C., Carelli P.: Variable transformer for controllable flux coupling. Appl. Phys. Lett. 86, 152504 (2005)

    Article  ADS  Google Scholar 

  45. van den Brink, M. A.: Galvanic coupling of flux qubits: simple theory and tunability. cond-mat/0605398 (2006)

  46. Liu Y.-x., Wei L.F., Tsai J.S., Nori F.: Controllable coupling between flux qubits. Phys. Rev. Lett. 96, 067003 (2006)

    Article  ADS  Google Scholar 

  47. Niskanen A.O., Nakamura Y., Tsai J.-S.: Tunable coupling scheme for flux qubits at the optimal point. Phys. Rev. B 73, 094506 (2006)

    Article  ADS  Google Scholar 

  48. Grajcar M., Liu Y.-x., Nori F., Zagoskin A.M.: Switchable resonant coupling of flux qubits. Phys. Rev. B 74, 172505 (2006)

    Article  ADS  Google Scholar 

  49. van der Ploeg S.H., Izmalkov A., van den Brink A.M., Hübner U., Grajcar M., Il’ichev E., Meyer H.-G., Zagoskin A.M.: Controllable coupling of superconducting flux qubits. Phys. Rev. Lett. 98, 057004 (2007)

    Article  ADS  Google Scholar 

  50. Hime T., Reichardt P.A., Plourde B.L.T., Robertson T.L., Wu C.-E., Ustinov A.V., Clarke J.: Solid-state qubits with current-controlled coupling. Science 314, 1427 (2006)

    Article  ADS  Google Scholar 

  51. Oukhanski N., Grajcar M., Il’ichev E., Meyer H.-G.: Low noise, low power consumption high electron mobility transistors amplifier for temperatures below 1 K. Rev. Sci. Instr. 74, 1145 (2003)

    Article  ADS  Google Scholar 

  52. May T., Il’ichev E., Grajcar M., Meyer H.-G.: Microfabricated oscillator for radio-frequency microscopy with integrated magnetic field concentrator. Rev. Sci. Instr. 74, 1282 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Il’ichev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il’ichev, E., van der Ploeg, S.H.W., Grajcar, M. et al. Weak continuous measurements of multiqubits systems. Quantum Inf Process 8, 133–153 (2009). https://doi.org/10.1007/s11128-009-0096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0096-y

Keywords

PACS

Navigation