Skip to main content
Log in

Signatures of Incoherence in a Quantum Information Processor

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Incoherent noise is manifest in measurements of expectation values when the underlying ensemble evolves under a classical distribution of unitary processes. While many incoherent processes appear decoherent, there are important differences. The distribution functions underlying incoherent processes are either static or slowly varying with respect to control operations and so the errors introduced by these distributions are refocusable. The observation and control of incoherence in small Hilbert spaces is well known. Here we explore incoherence during an entangling operation, such as is relevant in quantum information processing. As expected, it is more difficult to separate incoherence and decoherence over such processes. However, by studying the fidelity decay under a cyclic entangling map we are able to identify distinctive experimental signatures of incoherence. This is demonstrated both through numerical simulations and experimentally in a three qubit nuclear magnetic resonance implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pravia M.A., Boulant N., Emerson J., Farid A., Fortunato E.M., Havel T.F., Martinez R., and Cory D.G. (2003). J. Chem. Phys. 119: 9993

    Article  ADS  Google Scholar 

  2. Boulant N., Emerson J., Havel T.F., Cory D.G., and Furuta S. (2004). J. Chem. Phys. 121: 2955

    Article  ADS  Google Scholar 

  3. Havel T.F. (2003). J. Math. Phys. 44: 534

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Weinstein Y.S., Havel T.F., Emerson J., Boulant N., Saraceno M., Lloyd S., and Cory D.G. (2004). J. Chem. Phys. 121: 6117

    Article  ADS  Google Scholar 

  5. Dahleh M., Peirce A.P., and Rabitz H. (1990). Phys. Rev. A 42:1065

    Article  ADS  Google Scholar 

  6. Peirce A.P., Dahleh M.A., and Rabitz H. (1988). Phys. Rev. A 37: 4950

    Article  ADS  MathSciNet  Google Scholar 

  7. Viola L. and Lloyd S. (1998). Phys. Rev. A 58: 2733

    Article  ADS  MathSciNet  Google Scholar 

  8. Viola L., Knill E., and Lloyd S. (1999). Phys. Rev. Lett. 82: 2417

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Viola L., Lloyd S., and Knill E. (1999). Phys. Rev. Lett. 83: 4888

    Article  ADS  MathSciNet  Google Scholar 

  10. Viola L. (2002). Phys. Rev. A 66: 012307

    Article  ADS  MathSciNet  Google Scholar 

  11. Levitt M. (1986). Prog. Nucl. Magn. Reson. Spectrosc. 18: 61

    Article  Google Scholar 

  12. Zanardi P. and Rasetti M. (1997). Phys. Rev. Lett. 79: 3306

    Article  ADS  Google Scholar 

  13. Lidar D.A., Chuang I.L., and Whaley K.B. (1998). Phys. Rev. Lett. 81: 2594

    Article  ADS  Google Scholar 

  14. Duan L.-M. and Guo G.-C. (1997). Phys. Rev. Lett. 79: 1953

    Article  ADS  Google Scholar 

  15. Knill E., Laflamme R., and Viola L. (2000). Phys. Rev. Lett. 84: 2525

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Shor P.W. (1995). Phys. Rev. A 52: R2493

    Article  ADS  Google Scholar 

  17. Steane A.M. (1996). Phys. Rev. Lett. 77: 793

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Rhim W.-K. and Kessemeier H. (1971). Phys. Rev. B 3: 3655

    Article  ADS  Google Scholar 

  19. Kessemeier H. and Rhim W.-K. (1972). Phys. Rev. B 5: 761

    Article  ADS  Google Scholar 

  20. Hahn E.L. (1950). Phys. Rev. 80: 580

    Article  MATH  ADS  Google Scholar 

  21. Carr H.Y. and Purcell E.M. (1954). Phys. Rev. 94: 630

    Article  ADS  Google Scholar 

  22. Meiboom S. and Gill D. (1958). Rev. Sci. Instrum. 29: 688

    Article  ADS  Google Scholar 

  23. Peres A. (1984). Phys. Rev. A 30: 1610

    Article  ADS  MathSciNet  Google Scholar 

  24. Jacquod P., Silvestrov P., and Beenakker C. (2001). Phys. Rev. E 64: 055203

    Article  ADS  Google Scholar 

  25. Emerson J., Weinstein Y.S., Lloyd S., and Cory D.G. (2002). Phys. Rev. Lett. 89: 284102

    Article  ADS  MathSciNet  Google Scholar 

  26. Haeberlen U. and Waugh J.S. (1968). Phys. Rev. 175: 453

    Article  ADS  Google Scholar 

  27. R. Alicki and K. Lendi, Lecture Notes Phys. 286 (1987).

  28. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, 1961), chap. 8.

  29. Cory D.G., Fahmy A.F., and Havel T.F. (1997). Proc. Nat. Acad. Sci. USA 94: 1634

    Article  ADS  Google Scholar 

  30. Teklemariam G., Fortunato E.M., Pravia M.A., Havel T.F., and Cory D.G. (2001). Phys. Rev. Lett. 86: 5845

    Article  ADS  Google Scholar 

  31. Fortunato E.M., Pravia M.A., Boulant N., Teklemariam G., Havel T.F., and Cory D.G. (2002). J. Chem. Phys. 116: 7599

    Article  ADS  Google Scholar 

  32. Ernst R.R., Bodenhausen G., and Wokaun A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Henry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, M.K., Gorshkov, A.V., Weinstein, Y.S. et al. Signatures of Incoherence in a Quantum Information Processor. Quantum Inf Process 6, 431–444 (2007). https://doi.org/10.1007/s11128-007-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-007-0063-4

Keywords

PACS

Navigation