A Double Well Interferometer on an Atom Chip

Radio-Frequency coupling between magnetically trapped atomic states allows to create versatile adiabatic dressed state potentials for neutral atom manipulation. Most notably, a single magnetic trap can be split into a double well by controlling amplitude and frequency of an oscillating magnetic field. We use this to build an integrated matter wave interferometer on an atom chip. Transverse splitting of quasi one-dimensional Bose–Einstein condensates over a wide range from 3 to 80 μm is demonstrated, accessing the tunnelling regime as well as completely isolated sites. By recombining the two split BECs in time of flight expansion, we realize a matter wave interferometer. The observed interference pattern exhibits a stable relative phase of the two condensates, clearly indicating a coherent splitting process. Furthermore, we measure and control the deterministic phase evolution throughout the splitting process. RF induced potentials are especially suited for integrated micro manipulation of neutral atoms on atom chips: designing appropriate wire patterns enables control over the created potentials to the (nanometer) precision of the fabrication process. Additionally, hight local RF amplitudes can be obtained with only moderate currents. This new technique can be directly implemented in many existing atom chip experiments.

This is a preview of subscription content, log in to check access.


  1. 1.

    Harber D.M, McGuirck J.M, Obrecht J.M, Cornell E.A (2003) J. Low. Temp. Phys. 133, 229, cond-mat/0307546.

    Article  Google Scholar 

  2. 2.

    Treutlein P, Hommelhoff P, Steinmetz T, Häansch T.W. (2004). Reichel J, Phys. Rev. Lett. 92, 203005

    Article  ADS  Google Scholar 

  3. 3.

    Wang Y.-J, Anderson D.Z., Bright V.M., Cornell E.A., Q.D., Kishimoto T, Prentiss M, Saravanan R.A., Segal S.R., Wu S (2005). Phys. Rev. Lett. 94, 090405

  4. 4.

    A. Günther, Kraft S, Zimmermann C, Fortagh J, cond-mat/0603631 (2006).

  5. 5.

    Garcia D.G., Diploma thesis, University of Heidelberg (2005).

  6. 6.

    Albiez M, Gati R, Fölling J., Hunsmann S, Cristiani M, Oberthaler M.K (2004). Phys. Rev. Lett. 95, 010402

    Article  Google Scholar 

  7. 7.

    Shin Y, Saba M, Pasquini T.A, Ketterle W, Pritchard D.E, Leanhardt A.E (2004). Phys. Rev. Lett. 92, 050405

    Article  ADS  Google Scholar 

  8. 8.

    Folman R, P. Krüger, Schmiedmayer J, Denschlag J, Henkel C (2002). Adv. At. Mol. Opt. Phys. 48, 263

    Google Scholar 

  9. 9.

    Reichel J, Hänsel W., Hänsch T.W. (1999). Phys. Rev. Lett. 83: 3398

    Article  ADS  Google Scholar 

  10. 10.

    Hänsel W., Reichel J, Hommelhoff P, Hänsch T.W. (2001). Phys. Rev. A 64, 063607

    Article  ADS  Google Scholar 

  11. 11.

    Reichel J (2002). Appl. Phys. B 74, 469

    Article  ADS  Google Scholar 

  12. 12.

    D. Müller, Anderson D.Z, Grow R.J, P. Schwindt D.D, Cornell E.A (1999). Phys. Rev. Lett. 83: 5194

    Article  ADS  Google Scholar 

  13. 13.

    Dekker N.H, Lee C.S, Lorent V, Thywissen J.H, Smith S.P, Drndić M., Westervelt R.M., Prentiss M (2000). Phys. Rev. Lett. 84: 1124

    Article  ADS  Google Scholar 

  14. 14.

    Folman R, Krüger P., Cassettari D, Hessmo B, Maier T, Schmiedmayer J (2000). Phys. Rev. Lett. 84: 4749

    Article  ADS  Google Scholar 

  15. 15.

    Cassettari D, Hessmo B, Folman R, Maier T, Schmiedmayer J (2000). Phys. Rev. Lett. 85, 23 5483

    Google Scholar 

  16. 16.

    Krüger P., Luo X, Klein M.W, Brugger K, Haase A, Wildermuth S, Groth S, Bar- Joseph I., Folman R., Schmiedmayer J.(2003) Phys. Rev. Lett. 91, 233201

    Article  ADS  Google Scholar 

  17. 17.

    Ott H, Fortagh J, Schlotterbeck G, Grossmann A, Zimmermann C (2001). Phys. Rev. Lett. 87, 230401

    Article  ADS  Google Scholar 

  18. 18.

    Hänsel W., Hommelhoff P, Hänsch T.W., Reichel J (2001). Nature 413, 498

    Article  ADS  Google Scholar 

  19. 19.

    Leanhardt A.E, Chikkatur A.P, Kielpinski D, Shin Y, Gustavson T.L, Ketterle W, Pritchard D.E (2002). Phys. Rev. Lett. 89, 040401

    Article  ADS  Google Scholar 

  20. 20.

    Schneider S, Kasper A, Hagen C.V, Bartenstein M, Engeser B, Schumm T, Bar-Joseph I., Folman R, Feenstra L, Schmiedmayer J (2003). Phys. Rev. A 67, 023612

    Article  ADS  Google Scholar 

  21. 21.

    Estéve J., Schumm T, Trebbia J.-B, Bouchoule I, Aspect A, Westbrook C.I (2005). Eur. Phys. J. D 35, 141

    Article  ADS  Google Scholar 

  22. 22.

    Shin Y, Sanner C, Jo G.-B., Pasquini T.A, Saba M, Ketterle W, Pritchard D.E, Vengalattore M, Prentiss M (2005). Phys. Rev. A 72, 021604

    Article  ADS  Google Scholar 

  23. 23.

    Hommelhoff P, Hänsel W., Steinmetz T, Hänsch T.W., Reichel J (2005). New J. Phys. 7, 3

    Article  ADS  Google Scholar 

  24. 24.

    Schumm T, Hofferberth S, Andersson L.M, Wildermuth S, Groth S, Bar-Joseph I., Schmiedmayer J, Krüger P. (2005). Nat. Phys. 1, 57

    Article  Google Scholar 

  25. 25.

    Lesanovsky I, Schumm T, Hofferberth S, Andersson L.M, Krüger P., Schmiedmayer J (2006). Phys. Rev. A 73, 033619

    Article  ADS  Google Scholar 

  26. 26.

    Wildermuth S, P. Krüger, Becker C, Brajdic M, Haupt S, Kasper A, Folman R, and Schmiedmayer J, Phys. Rev. A 69, 030901(R) (2004).

  27. 27.

    Hinds E.A, Vale C.J, Boshier M.G (2001). Phys. Rev. Lett. 86: 1462

    Article  ADS  Google Scholar 

  28. 28.

    Grimm R, Weidemüller M., Ovchinnikov Y.B (2000). Adv. At. Mol. Opt. Phys. 42: 95

    Article  Google Scholar 

  29. 29.

    Muskat E, Dubbers D, Schärpf O. (1987). Phys. Rev. Lett. 58: 2047

    Article  ADS  Google Scholar 

  30. 30.

    Spreeuw R.J.C, Gerz C, Goldner L.S, Phillips W.D, Rolston S.L, Westbrook C.I, Reynolds M.W, Silvera I.F (1994). Phys. Rev. Lett.72: 3162

    Article  ADS  Google Scholar 

  31. 31.

    Zobay O., Garraway B.M (2001). Phys. Rev. Lett. 86: 1195

    Article  ADS  Google Scholar 

  32. 32.

    Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V, Perrin H (2004). Europhys. Lett. 67: 593

    Article  ADS  Google Scholar 

  33. 33.

    Trupke M, Hinds E.A, Curtis E.A, Moktadir Z, Koukharenk E, Kraft M (2005). Appl. 24 Phys. Lett. 87, 211106

    Article  Google Scholar 

  34. 34.

    Haase A, Hessmo B, Schmiedmayer J (2006). Opt. Lett. 31, 268

    Article  ADS  Google Scholar 

  35. 35.

    Long R, Steinmetz T, Hommelhoff P, Hänsel W., Hänsch T.W., Reichel J (2003). Phil. Trans. R. Soc. Lond. A 361: 1375

    Article  ADS  Google Scholar 

  36. 36.

    Fortagh J, Ott H, Kraft S, Günther A., Zimmermann C (2002). Phys. Rev. A 66 041604(R)

  37. 37.

    Estève J., Schumm T, Trebbia J.-B, Bouchoule I, Aspect A, Westbrook C.I (2005). Eur. Phys. J. D 35, 141

    Article  ADS  Google Scholar 

  38. 38.

    P. Krüger, Andersson L.M, Wildermuth S, Hofferberth S, Haller E, Aigner S, Groth S, I. Bar-Joseph, and Schmiedmayer J, eprint arXiv:cond-mat/0504686 (2005).

  39. 39.

    P. Krüger, PhD Thesis, University of Heidelberg (2004).

  40. 40.

    Wildermuth S, PhD thesis, University of Heidelberg (2005).

  41. 41.

    Hofferberth S, Master’s thesis, University of Heidelberg (2004).

  42. 42.

    Hellweg D, Dettmer S, Ryyty P, Arlt J.J, Ertmer W, Sengstock K, Petrov D.S, Shlyapnikov G.V, Kreutzmann H, Santos L.et al., (2001). Appl. Phys. B 73: 781

    Article  ADS  Google Scholar 

  43. 43.

    Dettmer S, Hellweg D, Ryytty P, Arlt J.J, Stengstock K, Petrov D.S, Shlyapnikov G.V, Kreutzmann H, Santos L, Lewenstein M. (2001). Phys. Rev. Lett. 87, 160406

    Article  ADS  Google Scholar 

  44. 44.

    Stickney J., Zozulya A (2003). Phys. Rev. A 68, 013611

    Article  ADS  Google Scholar 

  45. 45.

    Denschlag J, Cassettari D, Schmiedmayer J (1999). Phys. Rev. Lett. 82, 2014

    Article  ADS  Google Scholar 

  46. 46.

    Henkel C, Krüger P., Folman R, Schmiedmayer J (2003). Appl. Phys. B 76: 173

    Article  ADS  Google Scholar 

  47. 47.

    Schroll C, Belzig W, Bruder C (2003). Phys. Rev. A 68, 043618

    Article  ADS  Google Scholar 

  48. 48.

    Schumm T, PhD thesis, University of Heidelberg/University of Paris 11 (2006).

Download references

Author information



Corresponding author

Correspondence to J. Schmiedmayer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schumm, T., Krüger, P., Hofferberth, S. et al. A Double Well Interferometer on an Atom Chip. Quantum Inf Process 5, 537–558 (2006). https://doi.org/10.1007/s11128-006-0033-2

Download citation


  • Atom waves
  • atom interferometry
  • Bose–Einstein condensation
  • double well
  • atom chips


  • 03.75.-b
  • 03.75.Nt
  • 39.20+q