Quantum Information Processing

, Volume 5, Issue 6, pp 537–558 | Cite as

A Double Well Interferometer on an Atom Chip

  • T. Schumm
  • P. Krüger
  • S. Hofferberth
  • I. Lesanovsky
  • S. Wildermuth
  • S. Groth
  • I. Bar-Joseph
  • L. M. Andersson
  • J. SchmiedmayerEmail author

Radio-Frequency coupling between magnetically trapped atomic states allows to create versatile adiabatic dressed state potentials for neutral atom manipulation. Most notably, a single magnetic trap can be split into a double well by controlling amplitude and frequency of an oscillating magnetic field. We use this to build an integrated matter wave interferometer on an atom chip. Transverse splitting of quasi one-dimensional Bose–Einstein condensates over a wide range from 3 to 80 μm is demonstrated, accessing the tunnelling regime as well as completely isolated sites. By recombining the two split BECs in time of flight expansion, we realize a matter wave interferometer. The observed interference pattern exhibits a stable relative phase of the two condensates, clearly indicating a coherent splitting process. Furthermore, we measure and control the deterministic phase evolution throughout the splitting process. RF induced potentials are especially suited for integrated micro manipulation of neutral atoms on atom chips: designing appropriate wire patterns enables control over the created potentials to the (nanometer) precision of the fabrication process. Additionally, hight local RF amplitudes can be obtained with only moderate currents. This new technique can be directly implemented in many existing atom chip experiments.


Atom waves atom interferometry Bose–Einstein condensation double well atom chips 


03.75.-b 03.75.Nt 39.20+q 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harber D.M, McGuirck J.M, Obrecht J.M, Cornell E.A (2003) J. Low. Temp. Phys. 133, 229, cond-mat/0307546.CrossRefGoogle Scholar
  2. 2.
    Treutlein P, Hommelhoff P, Steinmetz T, Häansch T.W. (2004). Reichel J, Phys. Rev. Lett. 92, 203005CrossRefADSGoogle Scholar
  3. 3.
    Wang Y.-J, Anderson D.Z., Bright V.M., Cornell E.A., Q.D., Kishimoto T, Prentiss M, Saravanan R.A., Segal S.R., Wu S (2005). Phys. Rev. Lett. 94, 090405Google Scholar
  4. 4.
    A. Günther, Kraft S, Zimmermann C, Fortagh J, cond-mat/0603631 (2006).Google Scholar
  5. 5.
    Garcia D.G., Diploma thesis, University of Heidelberg (2005).Google Scholar
  6. 6.
    Albiez M, Gati R, Fölling J., Hunsmann S, Cristiani M, Oberthaler M.K (2004). Phys. Rev. Lett. 95, 010402CrossRefGoogle Scholar
  7. 7.
    Shin Y, Saba M, Pasquini T.A, Ketterle W, Pritchard D.E, Leanhardt A.E (2004). Phys. Rev. Lett. 92, 050405CrossRefADSGoogle Scholar
  8. 8.
    Folman R, P. Krüger, Schmiedmayer J, Denschlag J, Henkel C (2002). Adv. At. Mol. Opt. Phys. 48, 263Google Scholar
  9. 9.
    Reichel J, Hänsel W., Hänsch T.W. (1999). Phys. Rev. Lett. 83: 3398CrossRefADSGoogle Scholar
  10. 10.
    Hänsel W., Reichel J, Hommelhoff P, Hänsch T.W. (2001). Phys. Rev. A 64, 063607CrossRefADSGoogle Scholar
  11. 11.
    Reichel J (2002). Appl. Phys. B 74, 469CrossRefADSGoogle Scholar
  12. 12.
    D. Müller, Anderson D.Z, Grow R.J, P. Schwindt D.D, Cornell E.A (1999). Phys. Rev. Lett. 83: 5194CrossRefADSGoogle Scholar
  13. 13.
    Dekker N.H, Lee C.S, Lorent V, Thywissen J.H, Smith S.P, Drndić M., Westervelt R.M., Prentiss M (2000). Phys. Rev. Lett. 84: 1124CrossRefADSGoogle Scholar
  14. 14.
    Folman R, Krüger P., Cassettari D, Hessmo B, Maier T, Schmiedmayer J (2000). Phys. Rev. Lett. 84: 4749CrossRefADSGoogle Scholar
  15. 15.
    Cassettari D, Hessmo B, Folman R, Maier T, Schmiedmayer J (2000). Phys. Rev. Lett. 85, 23 5483Google Scholar
  16. 16.
    Krüger P., Luo X, Klein M.W, Brugger K, Haase A, Wildermuth S, Groth S, Bar- Joseph I., Folman R., Schmiedmayer J.(2003) Phys. Rev. Lett. 91, 233201CrossRefADSGoogle Scholar
  17. 17.
    Ott H, Fortagh J, Schlotterbeck G, Grossmann A, Zimmermann C (2001). Phys. Rev. Lett. 87, 230401CrossRefADSGoogle Scholar
  18. 18.
    Hänsel W., Hommelhoff P, Hänsch T.W., Reichel J (2001). Nature 413, 498CrossRefADSGoogle Scholar
  19. 19.
    Leanhardt A.E, Chikkatur A.P, Kielpinski D, Shin Y, Gustavson T.L, Ketterle W, Pritchard D.E (2002). Phys. Rev. Lett. 89, 040401CrossRefADSGoogle Scholar
  20. 20.
    Schneider S, Kasper A, Hagen C.V, Bartenstein M, Engeser B, Schumm T, Bar-Joseph I., Folman R, Feenstra L, Schmiedmayer J (2003). Phys. Rev. A 67, 023612CrossRefADSGoogle Scholar
  21. 21.
    Estéve J., Schumm T, Trebbia J.-B, Bouchoule I, Aspect A, Westbrook C.I (2005). Eur. Phys. J. D 35, 141CrossRefADSGoogle Scholar
  22. 22.
    Shin Y, Sanner C, Jo G.-B., Pasquini T.A, Saba M, Ketterle W, Pritchard D.E, Vengalattore M, Prentiss M (2005). Phys. Rev. A 72, 021604CrossRefADSGoogle Scholar
  23. 23.
    Hommelhoff P, Hänsel W., Steinmetz T, Hänsch T.W., Reichel J (2005). New J. Phys. 7, 3CrossRefADSGoogle Scholar
  24. 24.
    Schumm T, Hofferberth S, Andersson L.M, Wildermuth S, Groth S, Bar-Joseph I., Schmiedmayer J, Krüger P. (2005). Nat. Phys. 1, 57CrossRefGoogle Scholar
  25. 25.
    Lesanovsky I, Schumm T, Hofferberth S, Andersson L.M, Krüger P., Schmiedmayer J (2006). Phys. Rev. A 73, 033619CrossRefADSGoogle Scholar
  26. 26.
    Wildermuth S, P. Krüger, Becker C, Brajdic M, Haupt S, Kasper A, Folman R, and Schmiedmayer J, Phys. Rev. A 69, 030901(R) (2004).Google Scholar
  27. 27.
    Hinds E.A, Vale C.J, Boshier M.G (2001). Phys. Rev. Lett. 86: 1462CrossRefADSGoogle Scholar
  28. 28.
    Grimm R, Weidemüller M., Ovchinnikov Y.B (2000). Adv. At. Mol. Opt. Phys. 42: 95CrossRefGoogle Scholar
  29. 29.
    Muskat E, Dubbers D, Schärpf O. (1987). Phys. Rev. Lett. 58: 2047CrossRefADSGoogle Scholar
  30. 30.
    Spreeuw R.J.C, Gerz C, Goldner L.S, Phillips W.D, Rolston S.L, Westbrook C.I, Reynolds M.W, Silvera I.F (1994). Phys. Rev. Lett.72: 3162CrossRefADSGoogle Scholar
  31. 31.
    Zobay O., Garraway B.M (2001). Phys. Rev. Lett. 86: 1195CrossRefADSGoogle Scholar
  32. 32.
    Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V, Perrin H (2004). Europhys. Lett. 67: 593CrossRefADSGoogle Scholar
  33. 33.
    Trupke M, Hinds E.A, Curtis E.A, Moktadir Z, Koukharenk E, Kraft M (2005). Appl. 24 Phys. Lett. 87, 211106CrossRefGoogle Scholar
  34. 34.
    Haase A, Hessmo B, Schmiedmayer J (2006). Opt. Lett. 31, 268CrossRefADSGoogle Scholar
  35. 35.
    Long R, Steinmetz T, Hommelhoff P, Hänsel W., Hänsch T.W., Reichel J (2003). Phil. Trans. R. Soc. Lond. A 361: 1375CrossRefADSGoogle Scholar
  36. 36.
    Fortagh J, Ott H, Kraft S, Günther A., Zimmermann C (2002). Phys. Rev. A 66 041604(R)Google Scholar
  37. 37.
    Estève J., Schumm T, Trebbia J.-B, Bouchoule I, Aspect A, Westbrook C.I (2005). Eur. Phys. J. D 35, 141CrossRefADSGoogle Scholar
  38. 38.
    P. Krüger, Andersson L.M, Wildermuth S, Hofferberth S, Haller E, Aigner S, Groth S, I. Bar-Joseph, and Schmiedmayer J, eprint arXiv:cond-mat/0504686 (2005).Google Scholar
  39. 39.
    P. Krüger, PhD Thesis, University of Heidelberg (2004).Google Scholar
  40. 40.
    Wildermuth S, PhD thesis, University of Heidelberg (2005).Google Scholar
  41. 41.
    Hofferberth S, Master’s thesis, University of Heidelberg (2004).Google Scholar
  42. 42.
    Hellweg D, Dettmer S, Ryyty P, Arlt J.J, Ertmer W, Sengstock K, Petrov D.S, Shlyapnikov G.V, Kreutzmann H, Santos al., (2001). Appl. Phys. B 73: 781CrossRefADSGoogle Scholar
  43. 43.
    Dettmer S, Hellweg D, Ryytty P, Arlt J.J, Stengstock K, Petrov D.S, Shlyapnikov G.V, Kreutzmann H, Santos L, Lewenstein M. (2001). Phys. Rev. Lett. 87, 160406CrossRefADSGoogle Scholar
  44. 44.
    Stickney J., Zozulya A (2003). Phys. Rev. A 68, 013611CrossRefADSGoogle Scholar
  45. 45.
    Denschlag J, Cassettari D, Schmiedmayer J (1999). Phys. Rev. Lett. 82, 2014CrossRefADSGoogle Scholar
  46. 46.
    Henkel C, Krüger P., Folman R, Schmiedmayer J (2003). Appl. Phys. B 76: 173CrossRefADSGoogle Scholar
  47. 47.
    Schroll C, Belzig W, Bruder C (2003). Phys. Rev. A 68, 043618CrossRefADSGoogle Scholar
  48. 48.
    Schumm T, PhD thesis, University of Heidelberg/University of Paris 11 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • T. Schumm
    • 1
    • 2
    • 3
  • P. Krüger
    • 1
    • 4
  • S. Hofferberth
    • 1
  • I. Lesanovsky
    • 1
  • S. Wildermuth
    • 1
  • S. Groth
    • 1
  • I. Bar-Joseph
    • 5
  • L. M. Andersson
    • 1
    • 6
  • J. Schmiedmayer
    • 1
    • 2
    Email author
  1. 1.Physikalisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Atominstitut Österreichischer UniversitätenViennaAustria
  3. 3.McLennan Physical LabsUniversity of TorontoOntarioCanada
  4. 4.Laboratoire Kastler BrosselÉcole Normale SupérieureParisFrance
  5. 5.Department of Condensed Matter PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  6. 6.Department of Microelectronics and Information TechnologyThe Royal Institute of TechnologyKistaSweden

Personalised recommendations