Quantum Information Processing

, Volume 5, Issue 2, pp 69–81 | Cite as

Quantum Malware

Article

When quantum communication networks proliferate they will likely be subject to a new type of attack by hackers, virus makers, and other malicious intruders. Here we introduce the concept of “quantum malware” to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner, which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed ancillas. It applies to arbitrary attack types, provided the protective operations are themselves not compromised.

Keywords

Quantum malware quantum cryptography quantum communication quantum computation decoherence 

Pacs

03.67.Hk 03.67.-a 03.67.Dd 05.30.-d 03.67.Pp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen M.A., Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UKMATHGoogle Scholar
  2. 2.
    Dowling J.P., Milburn G.J. (2003). Phil. Trans. R. Soc. (Lond.) 361: 1655CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    C. Elliott, eprint quant-ph/0412029.Google Scholar
  4. 4.
    Steane A.M. (1999). Nature 399: 124CrossRefADSGoogle Scholar
  5. 5.
    Cleve R., Gottesman D., Lo H.-K. (1999). Phys. Rev. Lett. 83: 648CrossRefADSGoogle Scholar
  6. 6.
    Shor P.W., Preskill J. (2000). Phys. Rev. Lett. 85: 441CrossRefPubMedADSGoogle Scholar
  7. 7.
    See, e.g., http://en.wikipedia.org/wiki/Malware.Google Scholar
  8. 8.
    Nielsen M.A., Chuang I.L. (1997). Phys. Rev. Lett. 79: 321CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    Vidal G., Masanes L., Cirac J.I. (2002). Phys. Rev. Lett. 88: 047905CrossRefPubMedADSGoogle Scholar
  10. 10.
    Rosko M., Buzek V., Chouha P.R., Hillery M. (2003). Phys. Rev. A 68: 062302CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Fiurasek J., Dusek M. (2004). Phys. Rev. A 69: 032302CrossRefADSGoogle Scholar
  12. 12.
    D’Ariano G.M., Perinotti P. (2005). Phys. Rev. Lett. 94: 090401CrossRefPubMedGoogle Scholar
  13. 13.
    Wootters W.K., Zurek W.H. (1982). Nature 299: 802CrossRefADSGoogle Scholar
  14. 14.
    Dieks D. (1982). Phys. Lett. A 92: 271CrossRefADSGoogle Scholar
  15. 15.
    Deutsch D. (1989). Proc. R. Soc. Lond. Ser. A 425: 73MATHADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kraus K. (1983). States, Effects and Operations, Fundamental Notions of Quantum Theory. Academic, BerlinMATHGoogle Scholar
  17. 17.
    H. Barnum et al., in Proc. 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS’02) (IEEE Press, 2002).Google Scholar
  18. 18.
    Gottesman D., Lo H.-K. (2000). Phys. Today 53: 22CrossRefGoogle Scholar
  19. 19.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K. (1993). Phys. Rev. Lett. 70: 1895CrossRefPubMedMATHADSMathSciNetGoogle Scholar
  20. 20.
    Giovannetti V., Lloyd S., Maccone S.L. (2001). Nature 412: 417CrossRefPubMedADSGoogle Scholar
  21. 21.
    Blakely G. (1979). Proc. AFIPS Nat. Comput. Conf. 48: 313Google Scholar
  22. 22.
    Shamir A. (1979). Comm. Assoc. Comput. Mach. 22: 612MATHMathSciNetGoogle Scholar
  23. 23.
    Gottesman D. (2000). Phys. Rev. A 61: 042311CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Hillery M., Buzek V., Berthiaume A. (1999). Phys. Rev. A 59: 1829CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Karlsson A., Koashi M., Imoto N. (1999) Phys. Rev. A 59: 162CrossRefADSGoogle Scholar
  26. 26.
    Hamburger D.A., Biham O., Avnir D. (1996). Phys. Rev. E 53: 3342CrossRefADSGoogle Scholar
  27. 27.
    Wu L.-A., Lidar D.A. (2004). Phys. Rev. A 70: 062310CrossRefADSGoogle Scholar
  28. 28.
    Loss D., DiVincenzo D.P. (1998). Phys. Rev. A 57: 120CrossRefADSGoogle Scholar
  29. 29.
    Burkard G., Loss D., DiVincenzo D.P. (1999). Phys. Rev. B 59: 2070CrossRefADSGoogle Scholar
  30. 30.
    Lidar D.A., Wu L.-A. (2002). Phys. Rev. Lett. 88: 017905CrossRefPubMedADSMathSciNetGoogle Scholar
  31. 31.
    Bonesteel N.E., Stepanenko D., DiVincenzo D.P. (2001). Phys. Rev. Lett. 87: 207901CrossRefPubMedADSGoogle Scholar
  32. 32.
    Chen P., Piermarocchi C., Sham L.J. (2001). Phys. Rev. Lett. 87: 067401CrossRefPubMedADSGoogle Scholar
  33. 33.
    Biolatti E., Iotti R.C., Zanardi P., Rossi F. (2000). Phys. Rev. Lett. 85: 5647CrossRefPubMedADSGoogle Scholar
  34. 34.
    Platzman P.M., Dykman M.I. (1999). Science 284: 1967CrossRefPubMedGoogle Scholar
  35. 35.
    Knill E., Laflamme R., Milburn G.J. (2001). Nature 409: 46CrossRefPubMedADSGoogle Scholar
  36. 36.
    Viola L.J. (2004) Mod. Optics 51: 2357MATHCrossRefADSGoogle Scholar
  37. 37.
    Facchi P., Tasaki S., Pascazio S., Nakazato H., Tokuse A., Lidar D.A. (2005). Phys. Rev. A 71: 022302CrossRefADSGoogle Scholar
  38. 38.
    D. A. Lidar and K. B. Whaley, in Irreversible Quantum Dynamics, Vol. 622 of Lecture Notes in Physics (Springer, Berlin, 2003), p. 83. Eprint quant-ph/0301032.Google Scholar
  39. 39.
    Lo H.-K., Chau H.F. (1999). Science 283: 2050CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Departments of Chemistry, Electrical Engineering-Systems, and PhysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations