Skip to main content
Log in

Implementation Schemes for the Factorized Quantum Lattice-Gas Algorithm for the One Dimensional Diffusion Equation using Persistent-Current Qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present two experimental schemes that can be used to implement the Factorized Quantum Lattice-Gas Algorithm for the 1D Diffusion Equation with Persistent-Current (PC) Qubits. One scheme involves biasing the PC Qubit at multiple flux bias points throughout the course of the algorithm. An implementation analogous to that done in Nuclear Magnetic Resonance (NMR) Quantum Computing is also developed. Errors due to a few key approximations utilized are discussed and differences between the PC Qubit and NMR systems are highlighted

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Berggren (2004) ArticleTitleQuantum Computing with Superconductors Proc. IEEE 92 IssueID10 1630 Occurrence Handle10.1109/JPROC.2004.833672

    Article  Google Scholar 

  2. M.A. Nielsen I.L. Chuang (2000) Quantum Computation and Quantum Information Cambridge Univ. Press Cambridge

    Google Scholar 

  3. Yepez J. Quantum Computing and Quantum Communications, Lecture Notes in Computer Science, Vol. 1509, Springer-Verlag, (1999) p. 35

  4. D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, edited by A. Dold et al. (Springer, Berlin, 2000)

  5. Yepez J. An efficient quantum algorithm for the one-dimensional Burgers equation, quant-ph/0210092.

  6. I. Chiorescu et al. (2003) ArticleTitleCoherent Dynamics of a Superconducting Flux Qubit Science 299 1869 Occurrence Handle10.1126/science.1081045 Occurrence Handle12589004

    Article  PubMed  Google Scholar 

  7. J.R. Friedman et al. (2000) ArticleTitleQuantum Superposition of Distinct Macroscopic States Nature 406 43 Occurrence Handle10.1038/35017505 Occurrence Handle10894533

    Article  PubMed  Google Scholar 

  8. Y.A. Pashkin et al. (2003) ArticleTitleQuantum Oscillations in Two Coupled Charge Qubits Nature 421 823 Occurrence Handle10.1038/nature01365 Occurrence Handle12594507

    Article  PubMed  Google Scholar 

  9. J.M. Martinis et al. (2002) ArticleTitleRabi Oscillations in a Large Josephon-Junction Qubit Phys. Rev. Lett. 89 117901 Occurrence Handle10.1103/PhysRevLett.89.117901 Occurrence Handle12225170

    Article  PubMed  Google Scholar 

  10. D. Vion et al. (2002) ArticleTitleManipulating the Quantum State of an Electrical Circuit Science 296 886 Occurrence Handle10.1126/science.1069372 Occurrence Handle11988568

    Article  PubMed  Google Scholar 

  11. I.L. Chuang et al. (1998) ArticleTitleBulk Quantum Computation with Nuclear Magnetic Resonance: Theory and Experiment Proc. R. Soc. Lond. A 454 447

    Google Scholar 

  12. M. Pravia et al. (2003) ArticleTitleExperimental Demonstration of Quantum Lattice Gas Computation Quant. Infor. Processing 2 97 Occurrence Handle10.1023/A:1025835216975

    Article  Google Scholar 

  13. J. Yepez (2001) ArticleTitleQuantum Lattice-Gas Model for the Diffusion Equation Intl. J. Mod. Phys. C 12 IssueID9 1285 Occurrence Handle10.1142/S0129183101002656

    Article  Google Scholar 

  14. Orlando T.P. et al. (1999). Superconducting Persistent-Current Qubit. Phys. Rev. B 60:15398

    Google Scholar 

  15. T.P. Orlando K.A. Delin (1991) Foundations of Applied Superconductivity Addison-Wesley Reading MA, UK

    Google Scholar 

  16. D.J. Harlingen ParticleVan et al. (2004) ArticleTitleDecoherence in Josepshon-junction qubits due to critical-current fluctuations Phys. Rev. B 70 064517 Occurrence Handle10.1103/PhysRevB.70.064517

    Article  Google Scholar 

  17. G.P. Berman et al. (2002) ArticleTitleSimulation of the Diffusion Equation on a Type-II Quantum Computer Phys. Rev. A 66 012310 Occurrence Handle10.1103/PhysRevA.66.012310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Berns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berns, D.M., Orlando, T.P. Implementation Schemes for the Factorized Quantum Lattice-Gas Algorithm for the One Dimensional Diffusion Equation using Persistent-Current Qubits. Quantum Inf Process 4, 265–282 (2005). https://doi.org/10.1007/s11128-005-6492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-005-6492-z

Keywords

PACS

Navigation