Advertisement

Quantum Information Processing

, Volume 4, Issue 2, pp 87–127 | Cite as

Classical and Quantum Complexity of the Sturm–Liouville Eigenvalue Problem

  • A. Papageorgiou
  • H Woźniakowski
Article

We study the approximation of the smallest eigenvalue of a Sturm–Liouville problem in the classical and quantum settings. We consider a univariate Sturm–Liouville eigenvalue problem with a nonnegative function q from the class C2 ([0,1]) and study the minimal number n(ɛ) of function evaluations or queries that are necessary to compute an ɛ-approximation of the smallest eigenvalue. We prove that n(ɛ)=Θ(ɛ−1/2) in the (deterministic) worst case setting, and n(ɛ)=Θ(ɛ−2/5) in the randomized setting. The quantum setting offers a polynomial speedup with bit queries and an exponential speedup with power queries. Bit queries are similar to the oracle calls used in Grover’s algorithm appropriately extended to real valued functions. Power queries are used for a number of problems including phase estimation. They are obtained by considering the propagator of the discretized system at a number of different time moments. They allow us to use powers of the unitary matrix exp((1/2) iM), where M is an n× n matrix obtained from the standard discretization of the Sturm–Liouville differential operator. The quantum implementation of power queries by a number of elementary quantum gates that is polylog in n is an open issue. In particular, we show how to compute an ɛ-approximation with probability (3/4) using n(ɛ)=Θ(ɛ−1/3) bit queries. For power queries, we use the phase estimation algorithm as a basic tool and present the algorithm that solves the problem using n(ɛ)=Θ(log ɛ−1) power queries, log 2ɛ−1 quantum operations, and (3/2) log ɛ−1 quantum bits. We also prove that the minimal number of qubits needed for this problem (regardless of the kind of queries used) is at least roughly (1/2) log ɛ−1. The lower bound on the number of quantum queries is proven in Bessen (in preparation). We derive a formula that relates the Sturm–Liouville eigenvalue problem to a weighted integration problem. Many computational problems may be recast as this weighted integration problem, which allows us to solve them with a polylog number of power queries. Examples include Grover’s search, the approximation of the Boolean mean, NP-complete problems, and many multivariate integration problems. In this paper we only provide the relationship formula. The implications are covered in a forthcoming paper (in preparation).

Keywords

eigenvalue problem numerical approximation quantum algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams, D. S., Lloyd, S. 1999Phys. Rev. Lett.8351625165CrossRefGoogle Scholar
  2. 2.
    I. Babuska , J. Osborn , Eigenvalue Problems, in Handbook of Numerical Analysis, Vol. II,P. G.. Ciarlet, J. L. Lions (eds.) (North-Holland, Amsterdam, 1991) pp. 641–787.Google Scholar
  3. 3.
    R. Beals, H. Buhrman, M. Cleve,R. Mosca, R. de Wolf in Proceedings of the Quantum lower bounds by polynomials,FOCS’98, 1998, pp. 352–361.Also http://arXiv.org/quant-ph/9802049.Google Scholar
  4. 4.
    E. Bernstein, and U. Vazirani SIAM J. Computing 26(5), 1411–1473.Google Scholar
  5. 5.
    A. J. Bessen, Phys. Rev. A 71, 042313 (2005). Also http://arXiv.org/quant-ph/0412008.Google Scholar
  6. 6.
    G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Am. Math. Soc., 305 53–74 (2002),Also http://arXiv.org/quant-ph/0005055.Google Scholar
  7. 7.
    W. Cheney and D. Kincaid Numerical Mathematics and Computing (5th edition) Brooks/Cole, Pacific Grove, Ca.Google Scholar
  8. 8.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M. 1988Quantum Algorithms Revisited, Proc. R. Soc. Lond. A454339354Google Scholar
  9. 9.
    Collatz, L. 1960The Numerical Treatment of Differential EquationsSpringer-VerlagBerlinGoogle Scholar
  10. 10.
    Courant, C., Hilbert, D. 1989Methods of Mathematical PhysicsVol. IWiley Classics Library,Willey-InterscienceNew YorkGoogle Scholar
  11. 11.
    Demmel, J. W. 1997Applied Numerical Linear AlgebraSIAMPhiladelphiaGoogle Scholar
  12. 12.
    Gary, H. 1965Math.Comput.19365379Google Scholar
  13. 13.
    L. Grover,Phys. Rev. Lett., 79(2), 325–328 (1997).Also http://arXiv.org/quant-ph/9706033.Google Scholar
  14. 14.
    S. Heinrich,J. Complexity 18(1), 1–50 (2002).Also http://arXiv.org/quant-ph/0105116.Google Scholar
  15. 15.
    Heinrich, S. 2003J. Complexity191942CrossRefGoogle Scholar
  16. 16.
    S. Heinrich ,J. Complexity 20, 5–26 (2004).Also http://arXiv.org/quant-ph/0305030.Google Scholar
  17. 17.
    S. Heinrich,J. Complexity 20, 27–45 (2004).Also http://arXiv.org/quant-ph/0305031.Google Scholar
  18. 18.
    P. Jaksch and A. Papageorgiou,Phys. Rev. Lett., 91 (2003). 257902.Also http://arXiv.org/quant-ph/0308016.Google Scholar
  19. 19.
    Keller, H. B. 1968Numerical methods for two-point boundary-value problemsBlaisdell Pub Co.,Waltham , MAGoogle Scholar
  20. 20.
    Kacewicz, B. Z. 2004J. Complexity20821834CrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Nayak and F. Wu,The quantum query complexity of approximating the median and related statistics, STOC 99, 384–393 (1999). Also http://arXiv.org/quant-ph/9804066.Google Scholar
  22. 22.
    Nielsen, M. A, Chuang, I. L. 2000Quantum Computation and Quantum InformationCambridge University PressCambridge,UKGoogle Scholar
  23. 23.
    Novak, E. 1988Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics 1349Springer-VerlagBerlinGoogle Scholar
  24. 24.
    E. Novak,J. Complexity 17, 2–16 (2001). Also http://arXiv.org/quant-ph/0008124.Google Scholar
  25. 25.
    Shor, P. W. 1997SIAM J. Comput.2614841509CrossRefGoogle Scholar
  26. 26.
    Strang, G., Fix, G. J. 1973An Analysis of the Finite Element MethodPrentice-HallEnglewood Cliffs, NJGoogle Scholar
  27. 27.
    Titchmarsh, E. C. 1958Eigenfunction Expansions Associated with Second-Order Differential Equations Part 2Oxford University PressOxford,UKGoogle Scholar
  28. 28.
    Traub, J. F., Wasilkowski, G. W., Woźniakowski, H. 1988Information-Based ComplexityAcademic PressNew YorkGoogle Scholar
  29. 29.
    Traub, J. F., Werschulz, G. A. 1998Complexity and InformationCambridge University PressCambridge, UKGoogle Scholar
  30. 30.
    J. F. Traub and H. Woźniakowski,Quant. Inform. Process., 1(5), 365–388 (2002). Also http://arXiv.org/quant-ph/0109113.Google Scholar
  31. 31.
    Wilkinson, J. H. 1965The Algebraic Eigenvalue ProblemOxford University PressOxford, UKGoogle Scholar
  32. 32.
    Zalka, C. 1988Proc. R. Soc. Lond. A454313322Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Papageorgiou
    • 1
  • H Woźniakowski
    • 2
  1. 1.Department of Computer Scienceolumbia UniversityNew YorkUSA
  2. 2.Institute of Applied Mathematics and MechanicsUniversity of WarsawPoland

Personalised recommendations