Quantum Information Processing

, Volume 4, Issue 6, pp 433–455 | Cite as

Multiple RF Coil Nuclear Magnetic Resonance Quantum Computing

  • Lisa C. Siskind
  • Bruce E. HammerEmail author
  • Nelson L. Christensen
  • Jeffrey Yepez
Quantum Computation for Physical Modeling Workshop

Recent work has demonstrated the feasibility of using an array of quantum information processors connected via classical channels (type II quantum computer) to implement a quantum lattice-gas algorithm. This paper describes work towards constructing a new experimental set-up for a type II quantum computer. This set-up has new hardware and software specifications but does follow previously published approaches of operation encoding the initial mass density onto a twoqubit processor and using standard pulse techniques to step through the algorithm. New hardware for this system includes the ability to read both qubits at once, effectively reducing the processing time by twofold. Hardware changes also include the use of multiple coils controlled by a single spectrometer and a hardware switch. New software includes a top level control system for the spectrometer for quick experimental configuration as well as configurable modeling software to verify results. Results are presented here from a system with the final software implementations and the two channel spectrometer configuration run on a single prototype coil. Progress towards the final multi-coil implementation is described.


Quantum information processing nuclear magnetic resonance quantum lattice gas diffusion equation quantum computing 


03.67.Lx 82.56.-b 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeffrey Yepez. (2001). Int. J. Modern Phys. C 12(9):1273CrossRefGoogle Scholar
  2. 2.
    Jeffrey Yepez Phys. Rev. A (2006). (To appear).Google Scholar
  3. 3.
    Jeffrey Yepez (2001). Int. J. Modern Phy. C 12(9):1285CrossRefGoogle Scholar
  4. 4.
    Berman G.P., Ezhov A.A., Kamenev D.I., Yepez J. (2002). Phy. Rev. A 66(012310):8Google Scholar
  5. 5.
    Marco A. Pravia, Zhiying Chen, Jeffrey Yepez, and David G. Cory Comp. Phys. Commun. (2001).Google Scholar
  6. 6.
    Jeffrey Yepez (2002). J Stat. Phys 107(1):203zbMATHCrossRefGoogle Scholar
  7. 7.
    Zhiying Chen, Jeffrey Yepez, and David G. Cory, Phys. Rev. A (2005) arXiv:quant-ph/0410198. (submitted).Google Scholar
  8. 8.
    Noggle J.H. and Schirmer R.E. (1971). The Nuclear Overhauser Effect, Chemical Applications. Academic Press, NYGoogle Scholar
  9. 9.
    A. G. Webb, Prog. Nucl. Magn Reson. Spectrosc. 31, 1 (1997).Google Scholar
  10. 10.
    Haase A., Odoj F., Von Klienlin M., Warnking I., Fidler F., Weisser A., Nittka M., Rommel E., Lanz T., Kalusche B., Griswold M. (2000). Concepts Magn Reson 12(6):361CrossRefGoogle Scholar
  11. 11.
    Hoult D.I. and Lauterbur P.C. (1979). J. Magn. Reson 34(2):425Google Scholar
  12. 12.
    Peck T.L., Magin R.L., Lauterbur P.C. (1995). J. Magn. Reson B 108:114CrossRefGoogle Scholar
  13. 13.
    Jeffrey Yepez, Quant. Inform. Proc. DOI: 10.1007/s11128-005-0009-7.Google Scholar
  14. 14.
    Jeffrey Yepez, Quant. Inform. Proc. DOI: 10.1007/s11128-005-0008-8.Google Scholar
  15. 15.
    Jeffrey Yepez, Int. J. Modern Phy. C 9(8), 1587 (July 1998).Google Scholar
  16. 16.
    Marco A. Pravia, PhD. thesis, Massachusetts Institute of Technology(2002).Google Scholar
  17. 17.
    Marco A. Pravia, Zhiying Chen, and David G. Cory, arXiv:quant-ph (Mar 2003).Google Scholar
  18. 18.
    Malcolm H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2001).Google Scholar
  19. 19.
    F. Bloch, Phys. Rev. 70(7 and 8), 469 (Oct 1946).Google Scholar
  20. 20.
    David G. Cory, Mark D. Price, and Timothy F. Havel (1998). Phys D 120: 82CrossRefGoogle Scholar
  21. 21.
    Isaac L. Chuang, Lieven M. K. Vandersypen, Xinlan Zhou, Debbie E. Leung, and Seth Lloyd, Nature 393, 143(4) (May 1998).Google Scholar
  22. 22.
    Mark D. Price, Evan M. Forunato, Marco A. Pravia, Craig Breen, Swami Kumaresean, Gabriel Roseberg, and David G. Cory. (2001). Concepts Magn Reson 13(3):151CrossRefGoogle Scholar
  23. 23.
    Marco A. Pravia, Evan Fortunato, Yaahov Weinstein, Mark D. Price, Grum Teklemariam, Richard J. Nelson, Yehuda Sharf, Shyamal Somaroo, Tseng C.H., Timothy F. Havel, and David G. Cory. (1999). Concepts Magn. Reson 11:225CrossRefGoogle Scholar
  24. 24.
    Neil A. Gershenfeld and Isaac L. Chuang, Science 275, 350 (Jan 1997).Google Scholar
  25. 25.
    Price M.D., Somaroo S.S., Tseng C.H., Gore J.C., Fahmy A.F., Havel T.F., and Cory D.G. (1999). J Magn Reson 140(2):371CrossRefADSGoogle Scholar
  26. 26.
    Zhiying Chen, Jeffrey Yepez, and David G. Cory, arXiv:quant-ph, 0410198 (April 2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Lisa C. Siskind
    • 1
  • Bruce E. Hammer
    • 1
    Email author
  • Nelson L. Christensen
    • 2
  • Jeffrey Yepez
    • 3
  1. 1.Center for Interdisciplinary Applications in Magnetic ResonanceUniversity of MinnesotaMinneapolisUSA
  2. 2.Carleton CollegeNorthfieldUSA
  3. 3.Air Force Research LaboratoryHanscom FieldUSA

Personalised recommendations