Advertisement

Quantum Information Processing

, Volume 3, Issue 1–5, pp 115–132 | Cite as

Controlling Spin Qubits in Quantum Dots

  • Hans-Andreas Engel
  • L. P. Kouwenhoven
  • Daniel Loss
  • C. M. Marcus
Article

Abstract

We review progress on the spintronics proposal for quantum computing where the quantum bits (qubits) are implemented with electron spins. We calculate the exchange interaction of coupled quantum dots and present experiments, where the exchange coupling is measured via transport. Then, experiments on single spins on dots are described, where long spin relaxation times, on the order of a millisecond, are observed. We consider spin-orbit interaction as sources of spin decoherence and find theoretically that also long decoherence times are expected. Further, we describe the concept of spin filtering using quantum dots and show data of successful experiments. We also show an implementation of a read out scheme for spin qubits and define how qubits can be measured with high precision. Then, we propose new experiments, where the spin decoherence time and the Rabi oscillations of single electrons can be measured via charge transport through quantum dots. Finally, all these achievements have promising applications both in conventional and quantum information processing.

PACS: 03.67.Lx, 03.67.Mn, 73.23.Hk, 85.35.Be

Spin qubits coupled quantum dots spin filter spin read out 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. A. Prinz, Phys. Today 45(4), 58 (1995); Science 282, 1660 (1998).Google Scholar
  2. 2.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moln´ar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).PubMedGoogle Scholar
  3. 3.
    Semiconductor Spintronics and Quantum Computation D. D. Awschalom, D. Loss, and N. Samarth (eds.) (Springer, Berlin, 2002).Google Scholar
  4. 4.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).Google Scholar
  5. 5.
    Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).Google Scholar
  6. 6.
    J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997); J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998); D. D. Awschalom and J. M. Kikkawa, Phys. Today 52(6), 33 (1999).Google Scholar
  7. 7.
    J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).Google Scholar
  8. 8.
    L. P. Kouwenhoven, G. Sch¨on, and L. L. Sohn, in Mesoscopic Electron Transport, Vol. 345 of NATO Advanced Study Institute, Series E, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Sch¨on (Kluwer Academic Publishers, Dordrecht, 1997).Google Scholar
  9. 9.
    D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998); Ph. 9701055.Google Scholar
  10. 10.
    B. E. Kane, Nature 393, 133 (1998).Google Scholar
  11. 11.
    S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys.Rev. Lett. 77, 3613 (1996).Google Scholar
  12. 12.
    J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308R (2003).Google Scholar
  13. 13.
    M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, Y. Feng, and Z. Wasilewski, Physica E 11, 35 (2001).Google Scholar
  14. 14.
    F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Phys. Rev. Lett. 75, 705 (1995); C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Science 274, 1332 (1996).Google Scholar
  15. 15.
    W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003).Google Scholar
  16. 16.
    T. H. Oosterkamp, S. F. Godijn, M. J. Uilenreef, Y. V. Nazarov, N. C. van der Vaart, and L. P. Kouwenhoven, Phys. Rev. Lett. 80, 4951 (1998).Google Scholar
  17. 17.
    R. H. Blick, D. Pfannkuche, R. J. Haug, K. V. Klitzing, and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998); ibid. 81, 689 (1998); T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature 395, 873 (1998); I. J. Maasilta and V. J. Goldman, Phys. Rev. Lett. 84, 1776 (2000).Google Scholar
  18. 18.
    L. DiCarlo, H. J. Lynch, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, cond-mat/0311308 (2003).Google Scholar
  19. 19.
    T. Hayashi, T. Fujisawa, H.-D. Cheong, Y.-H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003).Google Scholar
  20. 20.
    A. Steane, Rep. Prog. Phys. 61, 117 (1998).Google Scholar
  21. 21.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, New York, 2000).Google Scholar
  22. 22.
    D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).Google Scholar
  23. 23.
    G. Burkard, H.-A. Engel, and D. Loss, Fortschr. Phys. 48, 965 (2000); G. Burkard and D. Loss, Ch. 8 in Ref. 3.Google Scholar
  24. 24.
    P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).Google Scholar
  25. 25.
    G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D. Awschalom, Physica E 16, 99 (2003).Google Scholar
  26. 26.
    Y. Kato, R. C. Myers, D. C. Driscoll, A. C. Gossard, J. Levy, and D. D. Awschalom, Science 299, 1201 (2003).Google Scholar
  27. 27.
    G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).Google Scholar
  28. 28.
    H.-A. Engel, D. Loss, Phys. Rev. Lett. 86, 4648 (2001); Phys. Rev. B 65, 195321 (2002).Google Scholar
  29. 29.
    H.-A. Engel, V. Golovach, D. Loss, L. M. K. Vandersypen, J. M. Elzerman, R. Hanson, and L. P. Kouwenhoven, cond-mat/0309023.Google Scholar
  30. 30.
    L. S. Levitov and E. I. Rashba, Phys. Rev. B 67, 115324 (2003).Google Scholar
  31. 31.
    J. M. Elzerman, et al. (unpublished).Google Scholar
  32. 32.
    X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 (2000).Google Scholar
  33. 33.
    D. M. Zumb¨ uhl, et al. (unpublished).Google Scholar
  34. 34.
    V. N. Golovach and D. Loss, cond-mat/0308241.Google Scholar
  35. 35.
    B. Su, V. J. Goldman, J. E. Cunningham, Phys. Rev. B 46, 7644 (1992); R. C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 71, 613 (1993); T. Schmidt, M. Tewordt, R. H. Blick, R. J. Haug, D. Pfannkuche, and K. V. Klitzing, Phys. Rev. B 51, 5570 (1995).Google Scholar
  36. 36.
    I. H. Chan, P. Fallahi, A. Vidan, R. M. Westervelt, M. Hanson, A. C. Gossard, condmat/ 0309205.Google Scholar
  37. 37.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).Google Scholar
  38. 38.
    A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 64, 125316 (2001).Google Scholar
  39. 39.
    S. I. Erlingsson and Y. V. Nazarov, Phys. Rev. B 66, 155327 (2002).Google Scholar
  40. 40.
    V. Golovach, A. Khaetskii, and D. Loss, cond-mat/0310655.Google Scholar
  41. 41.
    A. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002).Google Scholar
  42. 42.
    A. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. B 67, 195329 (2003).Google Scholar
  43. 43.
    T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, S. Tarucha, Nature 419, 278 (2002).Google Scholar
  44. 44.
    R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, L. P. Kouwenhoven, Phys. Rev. Lett. 91, 196802 (2003).Google Scholar
  45. 45.
    D. M. Zumb¨ uhl, J. B. Miller, C. M. Marcus, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 89, 276803 (2002). Note that their ?_SO is related to ours by ?SO =2?_SO.Google Scholar
  46. 46.
    A. G. Huibers, J. A. Folk, S. R. Patel, C. M. Marcus, C. I. Duru¨ oz, and J. S. Harris, Jr.,Phys. Rev. Lett. 83, 5090 (1999).Google Scholar
  47. 47.
    R. Hanson, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, I. T. Vink, and L. P. Kouwenhoven, cond-mat/0311414.Google Scholar
  48. 48.
    J. A. Folk, R. M. Potok, C. M. Marcus, and V. Umansky, Science 299, 679 (2003).Google Scholar
  49. 49.
    R. M. Potok, J. A. Folk, C. M. Marcus, V. Umansky, M. Hanson, and A. C. Gossard, Phys. Rev. Lett. 91, 016802 (2003).Google Scholar
  50. 50.
    D. V. Averin and Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert and M. H. Devoret, NATO ASI Series B, Vol. 294 (Plenum Press, New York, 1992).Google Scholar
  51. 51.
    R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky, Phys. Rev. Lett. 89, 266602 (2002).Google Scholar
  52. 52.
    B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B. Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000).Google Scholar
  53. 53.
    M. Friesen, C. Tahan, R. Joynt, and M. A. Eriksson,Phys. Rev. Lett. 92, 037901 (2004).Google Scholar
  54. 54.
    M. Devoret, D. Estève, and Ch. Urbina, Nature (London) 360, 547 (1992).Google Scholar
  55. 55.
    M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Phys. Rev. Lett. 70, 1311 (1993).Google Scholar
  56. 56.
    W. Lu, Z. Q. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature 423 (6938), 422 (2003).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Hans-Andreas Engel
    • 1
  • L. P. Kouwenhoven
    • 2
  • Daniel Loss
    • 1
  • C. M. Marcus
    • 3
  1. 1.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland
  2. 2.Department of NanoScience and ERATO Mesoscopic Correlation ProjectDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations