Skip to main content
Log in

The Data Compression Theorem for Ergodic Quantum Information Sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We extend the data compression theorem to the case of ergodic quantum information sources. Moreover, we provide an asymptotically optimal compression scheme which is based on the concept of high probability subspaces. The rate of this compression scheme is equal to the von Neumann entropy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Barnum C. Fuchs R. Jozsa B. Schumacher (1996) Phys. Rev. A. 54 IssueID6 4707–4711 Occurrence Handle10.1103/PhysRevA.54.4707 Occurrence Handle1:CAS:528:DyaK28XnsFCmtrg%3D Occurrence Handle9914035

    Article  CAS  PubMed  Google Scholar 

  2. I. Bjelaković T. Krüger Ra. Siegmund-Schultze A. Szkola (2004) ArticleTitleThe Shannon-McMillan Theorem for Ergodic Quantum Lattice Systems, math.DS/0207121 Appeared in: Invent Math. A55 203–222 Occurrence Handle10.1007/s00222-003-0318-3

    Article  Google Scholar 

  3. N. Datta Yu. Suhov (2002) ArticleTitleData Compression Limit for an Information Source of Interacting Qubits Quant. Inf. Process 1(4) 4 257–281 Occurrence Handle10.1023/A:1022148203300

    Article  Google Scholar 

  4. E. B. Davies (1976) Quantum Theory of Open Systems Academic Press London

    Google Scholar 

  5. M. Fannes (1973) Commun. Math. Phys. 31 291–294

    Google Scholar 

  6. K.-E. Hellwig K. Kraus (1969) Commun. Math. Phys. 11 214–220

    Google Scholar 

  7. K.-E. Hellwig K. Kraus (1970) Commun. Math. Phys. 16 142–147

    Google Scholar 

  8. F. Hiai D. Petz (1991) Commun. Math. Phys. 143 99–114

    Google Scholar 

  9. M. Horodecki (1998) Phys. Rev. A. 57 3364–3369 Occurrence Handle10.1103/PhysRevA.57.3364 Occurrence Handle1:CAS:528:DyaK1cXislKrs7k%3D

    Article  CAS  Google Scholar 

  10. R.B. Israel (1979) Convexity in the Theory of Lattice Gases Princeton New Jersey

    Google Scholar 

  11. R. Jozsa B. Schumacher (1994) J. Modern Optics 41 IssueID12 2343–2349

    Google Scholar 

  12. Kraus K. (1983) States, Effects and Operations, Fundamental Notions of Quantum Theory Lecture Notes in Physics 190 Springer-Verlag Berlin

    Google Scholar 

  13. M. A. Nielsen I. L. Chuang (2000) Quantum Computation and Quantum Information Cambridge University Press Cambridge

    Google Scholar 

  14. D. Petz M. Mosonyi (2001) J. Math. Phys 42 4857–4864 Occurrence Handle10.1063/1.1398335

    Article  Google Scholar 

  15. D. Ruelle (1969) Statistical Mechanics W.A. Benjamin New York

    Google Scholar 

  16. P. C. Shields (1996) The Ergodic Theory of Discrete Sample Paths American Mathematical Society Providence. RI

    Google Scholar 

  17. A. Uhlmann (1977) Commun. Math. Phys. 54 21–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Bjelaković.

Additional information

PACS:03.67-a; 02.50.Ey; 89.70.+c.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjelaković, I., Szkola, A. The Data Compression Theorem for Ergodic Quantum Information Sources. Quantum Inf Process 4, 49–63 (2005). https://doi.org/10.1007/s11128-003-3195-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-003-3195-1

Keywords

Navigation