Public Choice

, Volume 173, Issue 3–4, pp 345–367 | Cite as

The effect of legislature size on public spending: evidence from a regression discontinuity design

  • Daniel Höhmann


What is the effect of legislature size on public spending? An answer to this question is provided by Weingast et al. (J Polit Econ 89(4):642–664, 1981), whose “law of 1/n” posits that an increase in the number of elected representatives always leads to an increase in public spending. Because elected politicians regard the tax base as a common pool from which they can finance specific projects for their constituencies, and these specific constituencies internalize the full benefits of the projects, but only bear a fraction of the costs (projects are financed from the common tax base), fiscal inefficiency will increase with the number of representatives. In this paper, I test the validity of the “law of 1/n” using a dataset of 9325 German municipalities between 2008 and 2010. Through the application of a regression discontinuity design, many of the methodological pitfalls of previous studies can be avoided and a valid estimation of the causal effect of legislature size on public spending for German municipalities can be determined. The results do not corroborate the positive findings of previous studies, which generally supported the implications of the “law of 1/n”. For the years 2008–2010, I find a negative effect of legislature size on public spending in German municipal councils.


Legislature size Public spending Law of 1/n Regression discontinuity design 

JEL Classification

D72 H72 R50 



I gratefully acknowledge helpful comments and suggestions by Matt Schoene, Peter Selb, Susumu Shikano, Ulrich Sieberer, Sophia Wallace, Geoffrey Wallace, the journal’s editors, two anonymous referees as well as participants at seminars in Konstanz and Rutgers. All errors and shortcomings are my own.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. Acemoglu, D. (2005). Constitutions, politics, and economics: A review essay on Persson and Tabellini’s. The Economic effects of constitutions. Journal of Economic Literature, 43(4), 1025–1048.CrossRefGoogle Scholar
  2. Ade, F., & Freier, R. (2011). When can we trust population thresholds in regression discontinuity designs? DIW Discussion Papers, 1136, 1–27.Google Scholar
  3. Alesina, A., & Perotti, R. (1999). Budget deficits and budget institutions. In J. M. Poterba & J. von Hagen (Eds.), Fiscal institutions and fiscal performance. Chicago: University of Chicago Press.Google Scholar
  4. Angrist, J. D., & Lavy, V. (1999). Using maimonides’ rule to estimate the effect of class size on scholastic achievement. The Quarterly Journal of Economics, 114(2), 533–575.CrossRefGoogle Scholar
  5. Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An empiricists companion. Princeton: Princeton University Press.Google Scholar
  6. Baqir, R. (2002). Districting and government overspending. Journal of Political Economy, 110(6), 1318–1354.CrossRefGoogle Scholar
  7. Baron, D. P. (1991). Majoritarian incentives, pork barrel programs, and procedural control. American Journal of Political Science, 35(1), 57–90.CrossRefGoogle Scholar
  8. Battaglini, M., & Coate, S. (2007). Inefficiency in legislative policymaking: A dynamic analysis. The American Economic Review, 97(1), 118–149.CrossRefGoogle Scholar
  9. Battistin, E., & Rettore, E. (2002). Testing for programme effects in a regression discontinuity design with imperfect compliance. Journal of the Royal Statistical Society, 165(1), 39–57.CrossRefGoogle Scholar
  10. Becker, S., Egger, P., & von Ehrlich, M. (2010). Going NUTS: The effect of EU structural funds on regional performance. Journal of Public Economics, 94(9), 578–590.CrossRefGoogle Scholar
  11. Berk, R. (2010). Recent perspectives on the regression discontinuity design. In A. R. Piquero & D. Weisburd (Eds.), Handbook of quantitative criminology (pp. 563–579). Berlin: Springer.CrossRefGoogle Scholar
  12. Bloom, H. S. (2012). Modern regression discontinuity analysis. Journal of Research on Educational Effectiveness, 5(1), 43–82.CrossRefGoogle Scholar
  13. Bradbury, J. C., & Crain, M. W. (2001). Legislative organization and government spending: Cross-country evidence. Journal of Public Economics, 82(3), 309–325.CrossRefGoogle Scholar
  14. Bradbury, J. C., & Stephenson, F. E. (2003). Local government structure and public expenditures. Public Choice, 115(1/2), 185–198.CrossRefGoogle Scholar
  15. Buchanan, J. M., & Tullock, G. (1996) [1962]. The calculus of consent: Logical foundations of constitutional democracy. Ann Arbor: University of Michigan Press.Google Scholar
  16. Butler, D. M. (2009). A regression discontinuity design analysis of the incumbency advantage and tenure in the US house. Electoral Studies, 28(1), 123–128.CrossRefGoogle Scholar
  17. Butler, D. M., & Butler, M. J. (2006). Splitting the difference? Causal inference and theories of split-party delegations. Political Analysis, 14(4), 439–455.CrossRefGoogle Scholar
  18. Calonico, S., Cattaneo, M. D., & Titiunik, R. (2014). Robust data-driven inference in the regression-discontinuity design. The Stata Journal, 14(4), 909–946.Google Scholar
  19. Cattaneo, M. D., Jansson, M. & Ma, X. (2017). Rddensity: Manipulation testing based on density discontinuity. The Stata Journal, 1–22 (forthcoming).Google Scholar
  20. Collie, M. P. (1988). Universalism and the parties in the US house of representatives, 1921-80. American Journal of Political Science, 32(4), 865–883.CrossRefGoogle Scholar
  21. Cook, T. D., & Wong, V. C. (2008). Empirical tests of the validity of the regression discontinuity design. Annals of Economics and Statistics, 91(92), 127–150.Google Scholar
  22. Del Rossi, A. F. (1995). The politics and economics of pork barrel spending: The case of federal financing of water resources development. Public Choice, 85(3/4), 285–305.CrossRefGoogle Scholar
  23. Egger, P., & Koethenbuerger, M. (2010). Government spending and legislative organization: Quasi-experimental evidence from Germany. American Economic Journal: Applied Economics, 2(4), 200–212.Google Scholar
  24. Eggers, A., Freier, R., Grembi, V., & Nannicini, T. (2017). Regression discontinuity designs based on population thresholds: Pitfalls and solutions. American Journal of Political Science. doi: 10.1111/ajps.12332.Google Scholar
  25. Ferejohn, J. A. (1974). Pork barrel politics: Rivers and harbors legislation, 1947–1968. Stanford: Stanford University Press.Google Scholar
  26. Fiorino, N., & Ricciuti, R. (2007). Legislature size and government spending in Italian regions: Forecasting the effects of a reform. Public Choice, 131(1), 117–125.CrossRefGoogle Scholar
  27. Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel hierarchical models. Cambridge: Cambridge University Press.Google Scholar
  28. Gilligan, T. W., & Matsusaka, J. G. (1995). Deviations from constituent interests: The role of legislative structure and political parties in the states. Economic Inquiry, 33(3), 383–401.CrossRefGoogle Scholar
  29. Gilligan, T. W., & Matsusaka, J. G. (2001). Fiscal policy, legislature size, and political parties: Evidence from state and local governments in the first half of the 20th century. National Tax Journal, 54(1), 57–82.CrossRefGoogle Scholar
  30. Hahn, J., Todd, P., & van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica, 69(1), 201–209.CrossRefGoogle Scholar
  31. Hainmüller, J., Kern, H., & Bechtel, M. (2006). Wahlkreisarbeit zahlt sich doppelt aus. Zur Wirkung des Amtsinhaberstatus einer Partei auf ihren Zweitstimmenanteil bei den Bundestagswahlen 1949 bis 1998. In T. Bräuninger & J. Behnke (Eds.), Jahrbuch für Handlungs- und Entscheidungstheorie (Vol. 4, pp. 11–46). Wiesbaden: VS Verlag für Sozialwissenschaften.CrossRefGoogle Scholar
  32. Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81(396), 945–960.CrossRefGoogle Scholar
  33. Holtkamp, L. (2006). Parteien und Bürgermeister in der Repräsentativen Demokratie. Kommunale Konkordanz- und Konkurrenzdemokratie im Vergleich. Politische Vierteljahresschrift, 47(4), 641–661.CrossRefGoogle Scholar
  34. Imbens, G., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator. The Review of Economic Studies, 79(3), 933–959.CrossRefGoogle Scholar
  35. Imbens, G. W., & Lemieux, T. (2008a). Regression discontinuity designs: A guide to practice. Journal of Econometrics, 142(2), 615–635.CrossRefGoogle Scholar
  36. Imbens, G. W., & Lemieux, T. (2008b). Special issue editors’ introduction: The regression discontinuity design—Theory and applications. Journal of Econometrics, 142(2), 611–614.CrossRefGoogle Scholar
  37. Lee, D. S. (2008). Randomized experiments from non-random selection in US house elections. Journal of Econometrics, 142(2), 675–697.CrossRefGoogle Scholar
  38. Lee, D. S., & Lemieux, T. (2010). Regression discontinuity designs in economics. Journal of Economic Literature, 48(2), 281–355.CrossRefGoogle Scholar
  39. MacDonald, L. (2008). The impact of government structure on local public expenditures. Public Choice, 136(3/4), 457–473.CrossRefGoogle Scholar
  40. McCormick, R. E., & Tollison, R. D. (1981). Politicians, legislation, and the economy. An inquiry into the interest-group theory of government. Boston: Martinus Nijhoff Publishing.Google Scholar
  41. McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test. Journal of Econometrics, 142(2), 698–714.CrossRefGoogle Scholar
  42. Naßmacher, H., & Naßmacher, K. (2007). Kommunalpolitik in Deutschland. Wiesbaden: VS Verlag für Sozialwissenschaften.Google Scholar
  43. Nichols, A. (2007). Causal inference with observational data. Stata Journal, 7(4), 507–541.Google Scholar
  44. Nichols, A. (2011). rd 2.0: Revised stata module for regression discontinuity estimation.
  45. Olson, M. (1965). The logic of collective action: Public goods and the theory of groups. Cambridge: Harvard University Press.Google Scholar
  46. Perotti, R., & Kontopoulos, Y. (2002). Fragmented fiscal policy. Journal of Public Economics, 86(2), 191–222.CrossRefGoogle Scholar
  47. Persson, T., & Tabellini, G. (2003). The economic effects of constitutions. Cambridge: MIT Press.Google Scholar
  48. Pettersson-Lidbom, P. (2008). Do parties matter for economic outcomes? A regression-discontinuity approach. Journal of the European Economic Association, 6(5), 1037–1056.CrossRefGoogle Scholar
  49. Pettersson-Lidbom, P. (2012). Does the size of the legislature affect the size of government? Evidence from two natural experiments. Journal of Public Economics, 96(3–4), 269–278.CrossRefGoogle Scholar
  50. Primo, D. M. (2006). “Stop us before we spend again: Institutional constraints on government spending. Economics and Politics, 18(3), 269–312.CrossRefGoogle Scholar
  51. Primo, D. M., & Snyder, J. M. (2008). Distributive politics and the law of 1/n. The Journal of Politics, 70(2), 477–486.CrossRefGoogle Scholar
  52. Riker, W. H. (1962). The theory of political coalitions. New Haven: Yale University Press.Google Scholar
  53. Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688–701.CrossRefGoogle Scholar
  54. Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100(469), 322–331.CrossRefGoogle Scholar
  55. Schaltegger, C. A., & Feld, L. P. (2009). Do large cabinets favor large governments? Evidence on the fiscal commons problem for Swiss cantons. Journal of Public Economics, 93(1), 35–47.CrossRefGoogle Scholar
  56. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston: Houghton Mifflin.Google Scholar
  57. Shepsle, K. A., & Weingast, B. R. (1981). Political preferences for the pork barrel: A generalization. American Journal of Political Science, 25(1), 96–111.CrossRefGoogle Scholar
  58. Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis: An alternative to the ex post facto experiment. Journal of Educational Psychology, 51(6), 309–317.CrossRefGoogle Scholar
  59. Trochim, W. M. K. (1984). Research design for program evaluation: The regression-discontinuity approach. Beverly Hills: Sage.Google Scholar
  60. Tullock, G. (1959). Problems of majority voting. The Journal of Political Economy, 67(6), 571–579.CrossRefGoogle Scholar
  61. Weingast, B. R. (1979). A rational choice perspective on congressional norms. American Journal of Political Science, 23(2), 245–262.CrossRefGoogle Scholar
  62. Weingast, B. R. (1994). Reflections on distributive politics and universalism. Political Research Quarterly, 47(2), 319–327.CrossRefGoogle Scholar
  63. Weingast, B. R., Shepsle, K. A., & Johnsen, C. (1981). The political economy of benefits and costs: A neoclassical approach to distributive politics. The Journal of Political Economy, 89(4), 642–664.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.University of BambergBambergGermany

Personalised recommendations