## Abstract

We present a geometric representation of the method of run-off voting. With this representation we can observe the non-monotonicity of the method and its susceptibility to the no-show paradox. The geometry allows us easily to identify a novel compromise rule between run-off voting and plurality voting that is monotonic.

## Keywords

Geometry Voting Monotonicity Election triangle## Notes

### Acknowledgements

I am extremely grateful to Nick Miller, Ashley Piggins, Bill Zwicker and two anonymous reviewers for many helpful comments and suggestions.

## References

- Black, D. (1958).
*The theory of committees and elections*. Cambridge: Cambridge University Press.Google Scholar - Blais, A., Massicotte, L., & Dobrzynska, A. (1997). Direct presidential elections: A world summary.
*Electoral Studies*,*16*(4), 441–455.CrossRefGoogle Scholar - Bouton, L. (2013). A theory of strategic voting in runoff elections.
*American Economic Review*,*103*(4), 1248–1288.CrossRefGoogle Scholar - Bradberry, B. A. (1992). A geometric view of some apportionment paradoxes.
*Mathematics Magazine*,*65*(1), 3–17.CrossRefGoogle Scholar - Campbell, D. E., & Kelly, J. S. (2002). Non-monotonicity does not imply the no-show paradox.
*Social Choice and Welfare*,*19*(3), 513–515.CrossRefGoogle Scholar - Coombs, C. H. (1964).
*A theory of data*. Oxford: Wiley.Google Scholar - Doron, G., & Kronick, R. (1977). Single transferrable vote: An example of a perverse social choice function.
*American Journal of Political Science*,*21*(2), 303–311.CrossRefGoogle Scholar - Fishburn, P. C., & Brams, S. J. (1983). Paradoxes of preferential voting.
*Mathematics Magazine*,*56*(4), 207–214.CrossRefGoogle Scholar - Green-Armytage, J., Tideman, T. N., & Cosman, R. (2016). Statistical evaluation of voting rules.
*Social Choice and Welfare*,*46*(1), 183–212.CrossRefGoogle Scholar - Grofman, B., Chiaramonte, A., D’alimonte, R., & Feld, S. L. (2004). Comparing and contrasting the uses of two graphical tools for displaying patterns of multiparty competition: Nagayama diagrams and simplex representations.
*Party Politics*,*10*(3), 273–299.CrossRefGoogle Scholar - Gudgin, G., & Taylor, P. J. (1979).
*Seats, votes, and the spatial organisation of elections*. London: Pion.Google Scholar - Ibbetson, D. (1965). Comment on Hugh B. Berrington, “The General Election of 1964”.
*Journal of the Royal Statistical Society, Series A (General)*,*128*, 54–55.Google Scholar - Jones, M. A. (2009). The geometry behind paradoxes of voting power.
*Mathematics Magazine*,*82*(2), 103–116.CrossRefGoogle Scholar - Lepelley, D., Chantreuil, F., & Berg, S. (1996). The likelihood of monotonicity paradoxes in run-off elections.
*Mathematical Social Sciences*,*31*(3), 133–146.CrossRefGoogle Scholar - Merrill, S. (1984). A comparison of efficiency of multicandidate electoral systems.
*American Journal of Political Science*,*28*(1), 23–48.CrossRefGoogle Scholar - Merrill, S. (1985). A statistical model for Condorcet efficiency based on simulation under spatial model assumptions.
*Public Choice*,*47*(2), 389–403.CrossRefGoogle Scholar - Miller, N. R. (2002).
*Monotonicity failure under STV and related voting systems*. San Diego: Paper presented at the Annual Meeting of the Public Choice Society.Google Scholar - Miller, N. R. (2015).
*Complexities of majority voting*. Working paper.Google Scholar - Miller, N. R. (2017). Closeness matters: Monotonicity failure in IRV elections with three candidates.
*Public Choice*. doi: 10.1007/s11127-017-0465-5.Google Scholar - Mueller, D. C. (2003).
*Public choice III*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Norman, R. Z. (2012).
*Frequency and severity of some STV paradoxes*. Miami: Paper presented at the World Meeting of the Public Choice Societies.Google Scholar - Nurmi, H. (1999).
*Voting paradoxes and how to deal with them*. Berlin: Springer.CrossRefGoogle Scholar - Nurmi, H. (2004). Monotonicity and its cognates in the theory of choice.
*Public Choice*,*121*(1–2), 25–49.CrossRefGoogle Scholar - O’Neill, J. C. (2007). Choosing a runoff election threshold.
*Public Choice*,*131*(3–4), 351–364.CrossRefGoogle Scholar - Plassmann, F., & Tideman, T. N. (2014). How frequently do different voting rules encounter voting paradoxes in three-candidate elections?
*Social Choice and Welfare*,*42*(1), 31–75.CrossRefGoogle Scholar - Rivière, A. (2004). Comparing electoral systems: A geometric analysis.
*Public Choice*,*118*(3), 389–412.CrossRefGoogle Scholar - Saari, D. G. (1991). Calculus and extensions of Arrow’s theorem.
*Journal of Mathematical Economics*,*20*(3), 271–306.CrossRefGoogle Scholar - Saari, D. G. (1992). Millions of election outcomes from a single profile.
*Social Choice and Welfare*,*9*(4), 277–306.Google Scholar - Saari, D. G. (1994).
*Geometry of voting*. New York: Springer.CrossRefGoogle Scholar - Saari, D. G. (1995).
*Basic geometry of voting*. New York: Springer.CrossRefGoogle Scholar - Sanver, M. R., & Zwicker, W. S. (2012). Monotonicity properties and their adaptation to irresolute social choice rules.
*Social Choice and Welfare*,*39*(2–3), 371–398.CrossRefGoogle Scholar - Shelton, W. (1972). Majorities and pluralities in elections.
*American Statistician*,*26*(5), 17–19.Google Scholar - Shugart, M. S., & Taagepera, R. (1994). Plurality versus majority election of presidents a proposal for a double complement rule.
*Comparative Political Studies*,*27*(3), 323–348.CrossRefGoogle Scholar - Upton, G. J. G. (1976). Diagrammatic representation of three-party contests.
*Political Studies*,*24*(4), 448–454.CrossRefGoogle Scholar - Yee, K.-P. (2006).
*Voting simulation visualizations*.http://zesty.ca/voting/sim/.

## Copyright information

© Springer Science+Business Media, LLC 2017