Skip to main content
Log in

Would you trust lobbies?

  • Published:
Public Choice Aims and scope Submit manuscript

Abstract

We consider the regulatory problem to approve or to ban a new product/technology in the context of scientific controversy about its detrimental environmental and/or health effects. We formalize the regulator’s decision-making process as a Tullock contest (Towards a Theory of the Rent-Seeking Society, Texas A&M University Press, Texas, 1980), the contestants being an industrial lobby, representing the economic agents who have developed the new product/technology, and an environmental lobby, representing the economic agents who will be harmed by the product or technology. Assuming that the industrial lobby has private information about the unfavorable environmental and/or health effects, but can be held liable for damage ex post, we derive the equilibrium properties of the contest. In particular, we derive conditions under which it is socially preferable for the regulator to decide according to the contest’s outcome, rather than according to an ex ante cost-benefit analysis, using his prior beliefs. We find that the contest outperforms the ex ante cost-benefit analysis only if the risk of judgment-proofness is not too high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. See Vigani and Olper (2013), for genetically modified organisms, and Johnson and Boersma (2012), for hydraulic fracturing to extract shale gas.

  2. Recent surveys are Hillman (2013), Konrad (2007) and Long (2013).

  3. It is assumed here that the two lobbies truly and fully represent their members’ interests. The problem of free-riding is considered in Sect. 6.

  4. Following Rowe (2011) and Wagner (2004), the asymmetry of information exists because the industrial lobby, as the developer of the product, is in a privileged position to test the associated detrimental externalities and, as the holder of the patent, can limit the ability of third-parties to access the results. As the detrimental externalities directly determine the damage \(\delta\), but are much less likely to influence the benefit b, this justifies to postulate that the benefit is public information, whereas the damage is private information. The same assumption is used in Polinsky and Shavell (2012).

  5. The situation where both lobbies I and E observe \(\delta\) is considered in Sect. 6. The situation where neither lobby observes \(\delta\) is not considered, because the lobbying activities then always foster a less efficient decision-making by the government.

  6. Tullock (1980) uses the general contest success function \(x^{r}/\left( x^{r}+y^{r}\right)\). We consider here the special case where \(r=1\), which is commonly used and referred to as the “lottery contest” in the literature (Konrad 2007).

  7. With the latter case, the fact that lobby I can pay a judgment of only k reflects the implicit assumption that b cannot be paid back (since otherwise, the available assets would be \(b+k\)). In the literature (Shavell 1984, 2005), this is usually justified saying that b is a utility benefit. This justification does not apply here, where b is a monetary benefit by definition. Here, an alternative justification would be that b is distributed to the shareholders as dividends before the judgment.

  8. Formally, \(\pi \left( x,y\right) =1/2\) for all \(x=y>0\), but \(\pi \left( x,y\right) =1\) when \(x=y=0\).

  9. It is worth noting that this result is not specific to the uniform distribution of damage. In fact, it remains true for any cumulative distribution of damage \(F\left( \delta \right)\) such that \(\int \nolimits _{k}^{1}\left( \delta -k\right) dF\left( \delta \right) >0\). We thank David Malueg for pointing us this point.

  10. Note that we implicitly assume here that the expected social surplus is the sum of the expected utilities of players I and E, (2) and (3) respectively. This is justified if the new product has a perfect substitute, which price is exogenously given, or if it is sold on the foreign market.

  11. The calculus is straightforward and therefore omitted here.

  12. The calculus can be found in the “Appendix”.

  13. We show that the expected social welfare resulting from the contest game equals \(\lim _{k\rightarrow b}s^{*}\left( b,k\right) =b^{2}/2\).

  14. In fact, we show in the proof of Proposition 1 that \(a\left( b\right)\) is bounded below by \(\tau \left( b\right) =\left( 1/b\right) \max \left\{ 2\sqrt{1-b}(1-\sqrt{1-b}),(2\sqrt{b}-1)\right\}\).

  15. There is an infinity of Nash equilibria, each allocating the same aggregate effort within lobby E.

  16. The calculus is not different from the one used in Sect. 5. See the “Appendix”. Clearly, we verify that \(s^{*}\left( b,k\right) =s^{1}\left( b,k\right)\).

  17. The calculus can be found in the “Appendix”.

  18. The payment capacity of lobby I at the time of the judgment is equal to his initial assets, plus his benefit, less the dividends distributed to his shareholders.

  19. Because the discriminant \(\Delta =-4(15-8k)(1-k))^{\mathtt{{2}}}<0\) and \(\varphi \left( k,k,1\right) =\left( 3-k\right) \left( 1-k\right) ^{2}>0\).

  20. Because the discriminant \(\Delta =4\left( 8k-7\right) \left( 1-k\right) ^{2}<0\) and \(\phi \left( k,k\right) =\left( 1-k\right) ^{3}>0\).

  21. This is because \(X/\left( 2\left( b-k\right) +X\right)\) is decreasing in \(X=\left( 1-k\right) ^{2}\).

References

  • Aidt, T. S. (1998). Political internalization of economic externalities and environmental policy. Journal of Public Economics, 69, 1–16.

    Article  Google Scholar 

  • Aidt, T. S., & Hwang, U. (2014). To ban or not to ban: Foreign lobbying and cross-national externalities. Canadian Journal of Economics, 47(1), 272–297.

    Article  Google Scholar 

  • Alcalde, J., & Dahm, M. (2010). Rent seeking and rent dissipation: A neutrality result. Journal of Public Economics, 94(1/2), 1–7.

    Article  Google Scholar 

  • Baik, K. H. (1994). Effort levels in contests with two asymmetric players. Southern Economic Journal, 61, 367–378.

    Article  Google Scholar 

  • Becker, G. S. (1983). A theory of competition among pressure groups for political influence. Quarterly Journal of Economics, 98(3), 371–400.

    Article  Google Scholar 

  • Brennan, G., & Buchanan, J. M. (1985). The reason of rules: Constitutional political economy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Congleton, R. D., Hillman, A. L., & Konrad, K. A. (2008). 40 years of research on rent seeking 1: Theory of rent seeking. New York: Springer.

    Book  Google Scholar 

  • Cropper, M. L., Evans, W. N., Berardi, S. J., Ducla-Soares, M. M., & Portney, P. R. (1992). The determinants of pesticide regulation: A statistical analysis of EPA decision making. Journal of Political Economy, 100, 175–197.

    Article  Google Scholar 

  • Gradstein, M. (1993). Rent seeking and the provision of public goods. Economic Journal, 103(420), 1236–1243.

    Article  Google Scholar 

  • Graichen, P. R., Requate, T., & Dijkstra, B. R. (2001). How to win the political contest: A monopolist vs. environmentalists. Public Choice, 108(3/4), 273–293.

    Article  Google Scholar 

  • Grossman, G. M., & Helpman, E. (1994). Protection for sale. American Economic Review, 84, 833–850.

    Google Scholar 

  • Hillman, A. L., & Katz, E. (1984). Risk-averse rent seekers and the social cost of monopoly power. Economic Journal, 94, 104–110.

    Article  Google Scholar 

  • Hillman, A. L., & Samet, D. (1987). Dissipation of contestable rents by small numbers of contenders. Public Choice, 54, 63–82.

    Article  Google Scholar 

  • Hillman, A. L., & Riley, J. G. (1989). Politically contestable rents and transfers. Economics and Politics, 1(1), 17–39.

    Article  Google Scholar 

  • Hillman, A. L. (2013). Rent seeking. In M. Reksulak & L. Razzolini (Eds.), The Elgar companion to public choice (2nd ed., pp. 307–331). Cheltenham: Edward Elgar Publishing.

    Chapter  Google Scholar 

  • Johnson, C., & Boersma, T. (2012). Energy (in) security in Poland: The case of shale gas. Energy Policy, 53, 389–399.

    Article  Google Scholar 

  • Katz, E., Nitzan, S., & Rosenberg, J. (1990). Rent-seeking for pure public goods. Public Choice, 65(1), 49–60.

    Article  Google Scholar 

  • Konrad, K. A. (2007). Strategy in contests: An introduction. WZB-Markets and Politics Working Paper No. SP II 2007–01.

  • Krueger, A. O. (1974). The political economy of the rent-seeking society. American Economic Review, 64, 291–303.

    Google Scholar 

  • Leininger, W. (1993). More efficient rent-Seeking: A Münchhausen solution. Public Choice, 75(1), 43–62.

    Article  Google Scholar 

  • Long, N. V. (2013). The theory of contests: A unified model and review of the literature. European Journal of Political Economy, 32, 161–181.

    Article  Google Scholar 

  • Malueg, D. A., & Yates, A. J. (2004). Rent seeking with private values. Public Choice, 119(1/2), 161–178.

    Article  Google Scholar 

  • Morgan, J. (2003). Sequential contests. Public Choice, 116(1/2), 1–18.

    Article  Google Scholar 

  • Nitzan, S. (1991). Collective rent dissipation. The Economic Journal, 101(409), 1522–1534.

    Article  Google Scholar 

  • Nti, K. O. (1999). Rent-seeking with asymmetric valuations. Public Choice, 98, 415–430.

    Article  Google Scholar 

  • Polinsky, A. M., & Shavell, S. (2012). Mandatory versus voluntary disclosure of product risks. Journal of Law and Economic Organizations, 28(2), 360–379.

    Article  Google Scholar 

  • Rowe, E. A. (2011). Patents, genetically modified foods, and ip overreaching. SMU Law Review, 64, 859–894.

    Google Scholar 

  • Shavell, S. (1984). A model of optimal use of liability and safety regulation. Rand Journal of Economics, 15(2), 271–280.

    Article  Google Scholar 

  • Shavell, S. (2005). Minimum asset requirements and compulsory liability insurance as solutions to the judgment-proof problem. Rand Journal of Economics, 36(1), 63–77.

    Google Scholar 

  • Skaperdas, S. (1996). Contest success functions. Economic Theory, 7(2), 283–290.

    Article  Google Scholar 

  • Tullock, G. (1967). The welfare costs of tariffs, and theft. Western Economic Journal, 5(3), 224–232.

    Google Scholar 

  • Tullock, G. (1980). Efficient rent seeking. In J. M. Buchanan, R. Tollison, & G. Tullock (Eds.), Towards a theory of the rent-seeking society (pp. 97–112). Texas: Texas A&M University Press.

    Google Scholar 

  • Vigani, M., & Olper, A. (2013). GMO standards, endogenous policy and the market for information. Food Policy, 43, 32–43.

    Article  Google Scholar 

  • Wagner, W. E. (2004). Common ignorance: The failure of environmental law to produce needed information on health and the environment. Duke Law Journal, 53(6), 1619–1745.

    Google Scholar 

  • Wärneryd, K. (2003). Information in conflicts. Journal of Economic Theory, 110, 121–136.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editor and two anonymous referees for valuable comments. We are grateful to David Malueg for suggesting several improvement of the paper and for pointing us the generalization in footnote 9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rouillon.

Appendix

Appendix

1.1 Existence of Nash equilibrium with full compensation of damage

We show that if \(\pi \left( 0,0\right) =\alpha <1\), then no equilibrium exists when lobby E is fully compensated for damage. Indeed, if fully compensated for damage, \(y=0\) is a dominant strategy for lobby E. As a result, lobby I chooses x to maximize \(\pi \left( x,0\right) \left( b-\min \left( \delta ,k\right) \right) -x\). If \(\alpha <1\), no equilibrium strategy exists for lobby I. Indeed, the strategy \(x=0\) is dominated by any strategy x such that \(0<x<\left( 1-\alpha \right) \left( b-\min \left( \delta ,k\right) \right)\); and for all \(x>0\), the expected utility is strictly decreasing in x.

Proof of Property 1

For all b and k, let \(\phi \left( b,k\right)\) be defined by \(\phi \left( b,k\right) \equiv 8\left( b-k\right) ^{2}+\left( 1-k\right) \left( 1-2b+k^{2}\right)\).

We distinguish two cases:

  • If \(\delta \le k\), we show that

$${{\textstyle \frac{\partial }{\partial k}}\left( x^{*}\left( \delta \right) +y^{*}\left( \delta \right) \right) {\textstyle =-\frac{1-k}{\left( 2\left( b-k\right) +\left( 1-k\right) ^{2}\right) ^{2}}\sqrt{\frac{b-\delta }{b-k}}\frac{\phi \left( b,k\right) }{2}},}$$
$${\textstyle \frac{\partial }{\partial k}\pi \left( x^{*}\left( \delta \right) ,y^{*}\left( \delta \right) \right) }={\textstyle \frac{1-k}{\left( 2\left( b-k\right) +\left( 1-k\right) ^{2}\right) ^{2}}\sqrt{\frac{b-\delta }{b-k}}\frac{\phi \left( b,k\right) }{2\left( b-k\right) }},$$
$${\textstyle \frac{\partial }{\partial k}\left( \begin{array}{c} \pi \left( x^{*}\left( \delta \right) ,y^{*}\left( \delta \right) \right) \left( b-\delta \right) \\ -x^{*}\left( \delta \right) -y^{*}\left( \delta \right) \end{array}\right) }{\textstyle =\frac{1-k}{\left( 2\left( b-k\right) +\left( 1-k\right) ^{2}\right) ^{2}}\sqrt{\frac{b-\delta }{b-k}}\phi \left( b,k\right) .}$$
  • If \(\delta >k\), we show that

$${\textstyle \frac{\partial }{\partial k}\left( x^{*}\left( \delta \right) +y^{*}\left( \delta \right) \right) {\textstyle =-\frac{1-k}{\left( 2\left( b-k\right) +\left( 1-k\right) ^{2}\right) ^{2}}\left( 4\left( b-k\right) ^{2}+\left( 1-k\right) ^{3}\right) },}$$
$${\textstyle \frac{\partial }{\partial k}\pi \left( x^{*}\left( \delta \right) ,y^{*}\left( \delta \right) \right) {\textstyle =-2\frac{1-k}{\left( 2\left( b-k\right) +\left( 1-k\right) ^{2}\right) ^{2}}\left( 1-2b+k\right) },}$$
$${\textstyle \frac{\partial }{\partial k}\left( \begin{array}{c} \pi \left( x^{*}\left( \delta \right) ,y^{*}\left( \delta \right) \right) \left( b-\delta \right) \\ -x^{*}\left( \delta \right) -y^{*}\left( \delta \right) \end{array}\right) {\textstyle =\frac{1-k}{\left( 2\left( b-k\right) +\left( 1-k\right) ^{2}\right) ^{2}}\left( \begin{array}{c} \phi \left( b,k\right) \\ +2\left( 1-2b+k\right) \left( \delta -k\right) \end{array}\right) }.}$$

Property 1 follows directly, assuming that b and k are such that \(\phi \left( b,k\right) >0\). To obtain the last sign, denote \(\varphi \left( b,k,\delta \right) \equiv \phi \left( b,k\right) +2\left( 1-2b+k\right) \left( \delta -k\right)\). Then:

  • If \(1\,-\,2b\,+\,k\ge 0\), then \(\varphi \left( b,k,\delta \right) >0\) directly follows from \(\delta >k\) and \(\phi \left( b,k\right) >0\);

  • If \(1-2b+k<0\), then \(\varphi \left( b,k,\delta \right)\) is decreasing in \(\delta\) and is bounded below by \(\varphi \left( b,k,1\right)\).

Then remark that \(\varphi \left( b,k,1\right) =8b^{2}-2\left( 3+5k\right) b+\left( 3-k+7k^{2}-k^{3}\right)\) and that this quadratic polynomial in b is strictly positive.Footnote 19

Finally, we can check that the condition that \(\phi \left( b,k\right) >0\) is not very restrictive. Rearrange \(\phi \left( b,k\right)\) to write it as \(\phi \left( b,k\right) =8b^{2}-2\left( 1+7k\right) b+\left( 1-k+9k^{2}-k^{3}\right)\). We have:

  • If \(k<7/8\), this quadratic polynomial in b is strictly positive;Footnote 20

  • If \(k\ge 7/8\), it is positive if \(b\notin \left[ k+\left( 1-k\right) \left( 1-\sqrt{8k-7}\right) /8,k+\left( 1-k\right) \left( 1+\sqrt{8k-7}\right) /8\right]\).

\(\square\)

1.2 Calculus of the ex ante expected social surplus (private information)

The ex ante expected social surplus is

$$s^{*}\left( b,k\right) =\int \nolimits _{0}^{1}\left[ \pi \left( x^{*}\left( \delta \right) ,y^{*}\right) \left( b-\delta \right) -x^{*}\left( \delta \right) -y^{*}\right] d\delta .$$

Using (7) and (8) and integrating, we get

$$\begin{aligned}s^{*}\left( b,k\right)&=\int \nolimits _{0}^{1}\left( b-\delta \right) d\delta -\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}\left( \begin{array}{c} 2\sqrt{b-k}\int \nolimits _{0}^{k}\sqrt{b-\delta }d\delta \\ +\int _{k}^{1}\left( 2b-\delta -k\right) d\delta \end{array}\right) \\&=\left( b-\frac{1}{2}\right) -\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}\left( \begin{array}{c} \frac{4}{3}\sqrt{b-k}\left( b^{\frac{3}{2}}-\left( b-k\right) ^{\frac{3}{2}}\right) \\ -\frac{1}{2}\left( 1-k\right) \left( 1-4b+3k\right) \end{array}\right) .\end{aligned}$$

Rearranging, this yields

$$s^{*}\left( b,k\right) =\left( b-\frac{1}{2}\right) +\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}\left( \frac{1}{2}-2b+k+\frac{1}{3}b^{2}f\left( \frac{k}{b}\right) \right) ,$$

where we define

$$f\left( \frac{k}{b}\right) =4\left( 1-\sqrt{1-\frac{k}{b}}\right) -2\frac{k}{b}-\frac{1}{2}\left( \frac{k}{b}\right) ^{2} {\text{for}\,\text{all}}\,0\le \frac{k}{b}\le 1.$$

Proof of Proposition 1

We first show the following lemmas.

Lemma 1

\(f\left( \frac{k}{b}\right) <\frac{3}{2}\left( \frac{k}{b}\right) ^{2}\), for all \(0<\frac{k}{b}<1\).

Proof

Simply observe that we can write

$$f\left( \frac{k}{b}\right) -\frac{3}{2}\left( \frac{k}{b}\right) ^{2}=2\left( \left( 1-\sqrt{1-\frac{k}{b}}\right) ^{2}-\left( \frac{k}{b}\right) ^{2}\right) .$$

This expression is negative since \(1-\sqrt{1-\frac{k}{b}}<\frac{k}{b}\) for all \(0<\frac{k}{b}<1\). \(\square\)

Lemma 2

If \(\phi \left( b,k\right) >0\), the expected social surplus \(s^{*}\left( b,k\right)\) is increasing in k. If \(\phi \left( b,k\right) \le 0\), \(s^{*}\left( b,k\right) <b-1/2\le {\mathrm{max}}\left( 0,b-1/2\right)\).

Proof

The first part follows directly from Property 1. To show the second part, first note that \(\phi \left( b,k\right) \le 0\) implies \(1-2b+k^{2}<0\). Then use Lemma 1 to show that

$$s^{*}\left( b,k\right) <\left( b-\frac{1}{2}\right) +\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}\left( \frac{1}{2}-2b+k+\frac{1}{2}k^{2}\right) .$$

Rearrange the term under brackets to write

$$s^{*}\left( b,k\right) <\left( b-\frac{1}{2}\right) +\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}\left( \frac{1}{2}\left( 1-2b+k^{2}\right) -\left( b-k\right) \right) ,$$

which proves the second part, given that \(k<b\). \(\square\)

The rest of the proof distinguishes two cases:

  • For all \(b\le 1/2\), letting \(\tau \left( b\right) \equiv 2\sqrt{1-b}\left( 1-\sqrt{1-b}\right) /b\in \left( 0,1\right)\), we show that there exists \(a\left( b\right) \in \left( \tau \left( b\right) ,1\right)\) such that \(s^{*}\left( b,a\left( b\right) b\right) =0\).

We first show that \(s^{*}\left( b,\tau \left( b\right) b\right) <0\). Indeed, Lemma 1 implies that

$$s^{*}\left( b,k\right) <\left( b-\frac{1}{2}\right) +\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}\left( \frac{1}{2}-2b+k+\frac{1}{2}k^{2}\right) .$$

For all k, remark thatFootnote 21

$$\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}<\frac{1}{2\left( b-k\right) +1}.$$

In particular, if \(k=\tau \left( b\right) b\), we obtain (after rearrangement)

$$\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}<\frac{1}{1-2b+4\left( 1-\sqrt{1-b}\right) },$$

and

$$\frac{1}{2}-2b+k+\frac{1}{2}k^{2}=\left( \frac{1}{2}-b\right) \left( 1-2b+4\left( 1-\sqrt{1-b}\right) \right) \ge 0,$$

implying that

$$s^{*}\left( b,\tau \left( b\right) b\right) <\left( b-\frac{1}{2}\right) +\frac{1-2b+4\left( 1-\sqrt{1-b}\right) }{1-2b+4\left( 1-\sqrt{1-b}\right) }\left( \frac{1}{2}-b\right) =0.$$

We then show that \(s^{*}\left( b,b\right) =b^{2}/2>0\).

From the mean-value theorem, there exists \(a\left( b\right)\) such that \(\tau \left( b\right)<a\left( b\right) <1\) and \(s^{*}\left( b,a\left( b\right) b\right) =0\). From Lemma 2, \(a\left( b\right)\) is unique and \(s^{*}\left( b,k\right) >0\) for all \(k/b>a\left( b\right)\).

  • For all \(b>1/2\), letting \(\tau \left( b\right) =\left( 2\sqrt{b}-1\right) /b\in \left( 0,1\right)\), we show that there exists \(a\left( b\right) \in \left( \tau \left( b\right) ,1\right)\) such that \(s^{*}\left( b,a\left( b\right) b\right) =b-1/2\).

We first show that \(s^{*}\left( b,\tau \left( b\right) b\right) <b-1/2\). Indeed, Lemma 1 implies that

$$s^{*}\left( b,k\right) -\left( b-\frac{1}{2}\right) <\frac{\left( 1-k\right) ^{2}}{2\left( b-k\right) +\left( 1-k\right) ^{2}}\left( \frac{1}{2}-2b+k+\frac{1}{2}k^{2}\right) .$$

In particular, if \(k=\tau \left( b\right) b\), we get

$$s^{*}\left( b,\tau \left( b\right) b\right) -\left( b-\frac{1}{2}\right) <0.$$

We then show that \(s^{*}\left( b,b\right) -\left( b-\frac{1}{2}\right) =\left( 1-b\right) ^{2}/2>0\).

From the mean-value theorem, there exists \(a\left( b\right)\) such that \(\tau \left( b\right)<a\left( b\right) <1\) and \(s^{*}\left( b,a\left( b\right) b\right) =b-1/2\). From Lemma 2, \(a\left( b\right)\) is unique and \(s^{*}\left( b,k\right) >b-1/2\), for all \(k/b>a\left( b\right)\).

1.3 Calculus of the ex ante expected social surplus (perfect information)

The ex ante expected social surplus is

$$S^{*}\left( b,k\right) =\int \nolimits _{0}^{1}\left[ \pi \left( X^{*}\left( \delta \right) ,Y^{*}\left( \delta \right) \right) \left( b-\delta \right) -X^{*}\left( \delta \right) -Y^{*}\left( \delta \right) \right] d\delta .$$

Using (14) and (15) and integrating, we get

$$\begin{aligned}S^{*}\left( b,k\right)&=\int \nolimits _{0}^{k}\left( b-\delta \right) d\delta -\left( b-k\right) \int _{k}^{1}\left( \frac{b-2\delta +k}{b+\delta -2k}\right) d\delta \\&=-2b+2k+3bk-\frac{5}{2}k^{2}+3\left( b-k\right) ^{2}\ln \left( 1+\frac{1-k}{b-k}\right) . \end{aligned}$$

observing that \(\left( b-2\delta +k\right) /\left( b+\delta -2k\right)\) admits \(3\left( b-k\right) \ln \left( b+\delta -2k\right) -2\delta\) as an antiderivative.

Proof of Proposition 3

We show below that \(S^{*}\left( b,k\right) >\max \left( 0,b-1/2\right)\) for all \(k/b\ge \tau \left( b\right)\). We need the following lemmas.

Lemma 3

\(S^{*}\left( b,k\right)\) is increasing in k.

Proof

First use (14) and (15) to calculate the ex post expected social surplus:

$$\left( \begin{array}{l} \pi \left( X^{*}\left( \delta \right) ,Y^{*}\left( \delta \right) \right) \left( b-\delta \right) \\ -X^{*}\left( \delta \right) -Y^{*}\left( \delta \right) \end{array}\right) ={\left\{ \begin{array}{ll} b-\delta , & {\text{if }} \delta \le k,\\ \frac{\left( b-k\right) \left( b-2\delta +k\right) }{b+\delta -2k}, & {\text{otherwise}}. \end{array}\right. }$$

Then show by differentiation that it is increasing in k:

$$\frac{\partial }{\partial k}\left( \begin{array}{l} \pi \left( X^{*}\left( \delta \right) ,Y^{*}\left( \delta \right) \right) \left( b-\delta \right) \\ -X^{*}\left( \delta \right) -Y^{*}\left( \delta \right) \end{array}\right) ={\left\{ \begin{array}{ll} 0, & {\text{if } }\delta \le k,\\ \frac{\left( b-\delta \right) ^{2}+\left( b-k\right) ^{2}+\left( \delta -k\right) ^{2}}{\left( b+\delta -2k\right) ^{2}}, & {\text{otherwise}}. \end{array}\right. }$$

This clearly implies that the ex ante expected social surplus \(S^{*}\left( b,k\right)\) is also increasing in k. \(\square\)

Lemma 4

\(S^{*}\left( b,k\right) >-2b+2k-bk+2b^{2}-\frac{1}{2}k^{2}.\)

Proof

By Assumption 1, we can show that

$$\ln \left( 1+\frac{1-k}{b-k}\right)>\ln \left( 2\right) >2/3.$$

After substitution, this directly implies that

$$S^{*}\left( b,k\right) >-2b+2k+3bk-\frac{5}{2}k^{2}+2\left( b-k\right) ^{2},$$

which gives the lemma after simplification. \(\square\)

The rest of the proof distinguishes two cases:

  • For all \(b\le 1/2\), using Lemma 4, we can write (after rearrangement)

    $$S^{*}\left( b,\tau \left( b\right) b\right) >2\sqrt{1-b}\left( 1-\sqrt{1-b}\right) ^{3},$$

    which is clearly positive.

  • For all \(b>1/2\), using Lemma 4, we can write (after rearrangement)

    $$S^{*}\left( b,\tau \left( b\right) b\right) -\left( b-\frac{1}{2}\right) >2\left( b+\sqrt{b}-1\right) \left( 1-\sqrt{b}\right) ^{3},$$

    which is clearly positive.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauvet, P., Rouillon, S. Would you trust lobbies?. Public Choice 167, 201–219 (2016). https://doi.org/10.1007/s11127-016-0336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11127-016-0336-5

Keywords

JEL Classification

Navigation