Turning a molehill into a mountain? How reading curricula are failing the poor worldwide

Abstract

Reading programs for low-income populations often give disappointing results. Failures may be partly due to a neglect of practice in decoding letters. Visual stimuli are best learned symbol by symbol, with pattern analogies and much practice to unite smaller components and speed up identification. The prerequisite for comprehending volumes of text is parallel-processing of letters. This happens when the letter-by-letter decoding function moves to the visual word form area of the brain, which recognizes words as if they were faces. Strangely, people may become fluent readers in transparent orthographies without knowing the relevant language. To teach the poor, governments and donors should promote instruction of individual letters and independent student practice with teacher feedback; then, students may achieve parallel processing. Teachers would emphasize comprehension and writing after the attainment of fluency. This methodology requires a rather lengthy textbook for every student, but it simplifies classroom activities and teacher training. To attain the Sustainable Development Goals of 2030, teachers must base instruction on specific scientific studies rather than “best practices”.

This is a preview of subscription content, access via your institution.

Figure 1

Source: Gori and Facoetti 2014; reprinted with permission.

Figure 2

References

  1. Abadzi, H. (2008). Efficient learning for the poor: New insights into literacy acquisition for children. International Review of Education, 54(56), 581–604.

    Article  Google Scholar 

  2. Abadzi, H. (2012). Can adults become fluent in newly learned scripts? Education Research International. doi:10.1155/2012/710785.

    Google Scholar 

  3. Abadzi, H. (2013). Literacy for All in 100 days? A research-based strategy for fast progress in low-income countries. Global Partnership for Education Working Paper Series 7. Washington, DC: World Bank.

  4. Aguirre, G. (2004). Perceptual learning and consolidation studied with perfusion fMRI. Dana Foundation. http://www.dana.org/Media/GrantsDetails.aspx?id=38965#sthash.MAeAGIfw.dpuf.

  5. Alloway, T. P., & Alloway, R. (2013). The working memory advantage. New York, NY: Simon & Schuster.

    Google Scholar 

  6. Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146–151.

    Article  Google Scholar 

  7. August, D., Carlo, M., Calderón, M., & Proctor, P. (2005). Development of literacy in Spanish-speaking English-language learners: Findings from a longitudinal study of elementary school children. Perspectives, 31(2), 17–19.

    Google Scholar 

  8. Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189–208.

    Article  Google Scholar 

  9. Bahrick, H. P., & Hall, L. K. (2005). The importance of retrieval failures to long-term retention: A metacognitive explanation of the spacing effect. Journal of Memory and Language, 52(4), 566–577.

    Article  Google Scholar 

  10. Bouhali, F., Thiebaut de Schotten, M., Pinel, P., Poupon, C., Mangin, J.-F., Dehaene, S., et al. (2014). Anatomical connections of the visual word form area. The Journal of Neuroscience, 34(46), 15402–15414.

    Article  Google Scholar 

  11. Bower, B. (2015). Trackers decipher ancient footprints: Hunters help reconstruct behavior of early Europeans. Science News, 188(8–9), 11.

    Google Scholar 

  12. Cappelletti, M., Leff, A. P., & Price, C. J. (2012). How number processing survives left occipito-temporal damage. Neurocase, 18(4), 271–285.

    Article  Google Scholar 

  13. Chabbott, C. (2014). Institutionalizing health and education for all: Global goals, innovations, and scaling up. New York, NY: Teachers College Press.

    Google Scholar 

  14. Chang, L. Y., Plaut, D. C., & Perfetti, C. A. (2016). Visual complexity in orthographic learning across writing system variations. Scientific Studies of Reading, 20(1), 64–85.

    Article  Google Scholar 

  15. Coyne, G. (2015). Language education policies and inequality in Africa: Cross-national empirical evidence. Comparative Education Review, 59(4), 619–637.

    Article  Google Scholar 

  16. Cribiore, R. (1996). Writing, teachers, and students in Greco-Roman Egypt. American Society of Papyrologists. Atlanta, GA: Scholars Press.

  17. Czigler, I. N. (2010a). Conscious and unconscious aspects of working memory. In I. Czigler & I. Winkler (Eds.), Unconscious memory representations in perception (p. 5). Amsterdam: John Benjamins.

    Google Scholar 

  18. Czigler, I. N. (2010b). Representation of regularities in visual stimulation. In I. Czigler & I. Winkler (Eds.), Unconscious memory representations in perception (pp. 107–131). Amsterdam: John Benjamins.

    Google Scholar 

  19. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–398.

    Article  Google Scholar 

  20. Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254–262.

    Article  Google Scholar 

  21. Dekker, L. (2015). The neural localization of musical score reading. Master’s thesis, Utrecht University, Medical Center, Utrecht.

  22. Devlin, K. (2010). The mathematical brain. In D. De Souza (Ed.), Mind, brain, and education. Bloomington, IN: Solution Tree Press.

    Google Scholar 

  23. Dufau, S., Grainger, J., Midgley, K., & Holcomb, P. J. (2015). A thousand words are worth a picture: Snapshots of printed-word processing in an event-related potential megastudy. Psychological Science, 26(12), 1887–1897.

    Article  Google Scholar 

  24. Feldon, D. F. (2007). Cognitive load and classroom teaching: The double-edged sword of automaticity. Educational Psychologist, 42(3), 123–137.

    Article  Google Scholar 

  25. Gori, S., & Facoetti, A. (2014). Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vision Research, 99(1), 78–87.

    Article  Google Scholar 

  26. Guastello, S. J., Boeh, H., Shumaker, C., & Shimmels, M. (2012). Catastrophe models for cognitive workload and fatigue. Theoretical Issues in Ergonomic Sciences, 13, 586–602.

    Article  Google Scholar 

  27. Gupta, P., Lipinski, J., Abbs, B., & Lin, P.-H. (2005). Serial position effects in nonword repetition. Journal of Memory and Language, 53, 141–162.

    Article  Google Scholar 

  28. Harris, M., & Hatano, G. (1999). Introduction: A cross-linguistic perspective on learning to read and write. In M. Harris & G. Hatano (Eds.), Learning to read and write: A cross-linguistic perspective (pp. 51–70). Cambridge: Cambridge University Press.

    Google Scholar 

  29. Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experiences of young American children. Baltimore, MD: Paul Brookes.

    Google Scholar 

  30. Hartley, M. J., & Swanson, V. E. (1986). Retention of basic skills among dropouts from Egyptian primary schools. Working paper series report EDT40. Washington, DC: World Bank.

  31. Iyengar, R., Karim, A., & Chagwira-Betha, F. (2016). Applying a reading program based on cognitive science in rural areas of Malawi: Preliminary results. Journal of Education and Training Studies, 4(5).

  32. Kahneman, D. (2011). Thinking fast and slow. New York, NY: Farrar, Strauss, & Giroux.

    Google Scholar 

  33. Keenan, J. M., Betjemann, R. S., & Olson, R. K. (2008). Reading comprehension tests vary in the skills they assess: Differential dependence on decoding and oral comprehension. Scientific Studies of Reading, 12(3), 281–300. doi:10.1080/10888430802132279.

    Article  Google Scholar 

  34. Kim, Y. S. G., Boyle, H. N., Zuilkowski, S. S., & Nakamura, P. (2016). Landscape report on early grade literacy. Washington, DC: USAID.

    Google Scholar 

  35. Kumano, H., & Uka, T. (2013). Neuronal mechanisms of visual perceptual learning. Behavioural Brain Research, 249, 75–80.

    Article  Google Scholar 

  36. Ledesma, H. M. L., & Morris, R. D. (2005). Patterns of language preference among bilingual (Filipino-English) boys. International Journal of Bilingual Education and Bilingualism, 8(1), 62–80.

    Article  Google Scholar 

  37. Lipina, S. J., & Posner, M. I. (2012). The impact of poverty on the development of brain networks. Frontiers in Human Neuroscience, 6, 1–12.

    Article  Google Scholar 

  38. Marinelli, C. V., Martelli, M. L., Praphamontripong, P., Zoccolotti, P., & Abadzi, H. (2013). Visual and linguistic factors in literacy acquisition: Instructional implications for beginning readers in low-income countries. Global Partnership for Education Working Paper Series on Learning 2. Washington, DC: World Bank.

  39. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  Google Scholar 

  40. Ministère de l’Education Nationale (2006). Lecture CP1. Abidjan, Côte Ivoire: Editions Burnie.

    Google Scholar 

  41. Mizuno, K., Tanaka, M., Yamaguti, K., Kajimoto, O., Kuratsune, H., & Watanabe, Y. (2011). Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behavioral and Brain Functions, 7(17). Article 9158.

  42. Moore, A. M., Gove, A., & Tietjen, K. (2016). Great expectations: A framework for assessing and understanding key factors affecting student learning of foundational reading skills. In P. McCardle, A. Mora, & A. Gove (Eds.), Progress toward a literate world: Early reading interventions in low-income countries. New Directions for Child and Adolescent Development. Washington, DC: Josey-Bass.

  43. NICHD [National Institute of Child Health and Human Development] (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction—Reports of the subgroups. Report of the National Reading Panel. Publication 00-4754. Washington, DC: U.S. Government Printing Office.

  44. Ouane, A., & Glanz, C. (Eds.) (2006). Optimizing learning and education in Africa: The language factor—A stock-taking research on mother tongue and bilingual education in sub-Saharan Africa. ADEA 2006 Biennial Meeting, Libreville, Gabon (March 27–31).

  45. Pegado, F., Comerlato, E., Ventura, F., Jobert, A., Nakamura, K., Buiatti, M., et al. (2014). Timing the impact of literacy on visual processing. Proceedings of the National Academy of Sciences, 111(49), E5233–E5242.

    Article  Google Scholar 

  46. Pelli, D. G., Burns, C., Farell, B., & Moore-Page, D. C. (2006). Feature detection and letter identification. Vision Research, 46(28), 4646–4674.

    Article  Google Scholar 

  47. Perfetti, C., Cao, F., & Booth, J. (2013). Specialization and universals in the development of reading skill: How Chinese research informs a universal science of reading. Scientific Studies of Reading, 17(1), 5–21.

    Article  Google Scholar 

  48. Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.

    Article  Google Scholar 

  49. Pritchard, S. C., Colheart, M., Marinus, E., & Castles, A. (2016). Modelling the implicit learning of phonological decoding from training on whole-word spellings and pronunciations. Scientific Studies of Reading, 20(1), 49–63.

    Article  Google Scholar 

  50. Rhodes, R. (2015). Reading reform at scale: The case of the 3.5 years of the Mali/PHARE program, August, 2008–March, 2012. Paper presented at the Comparative and International Education Conference, Washington, DC (March 8–15).

  51. Rock, I., & Gutman, D. (1981). The effect of inattention on form perception. Journal of Experimental Psychology: Human Perception & Performance, 7, 275–285.

    Google Scholar 

  52. Royer, M., Abadzi, H., & Kinda, J. (2004). The impact of phonological-awareness and rapid-reading training on the reading skills of adolescent and adult neoliterates. International Review of Education, 50(1), 53–71.

    Article  Google Scholar 

  53. RTI [Research Triangle Institute] (2014a). 2014 Endline report of Early Grade Reading Assessment (EGRA) and Early Grade Mathematics Assessment (EGMA). DRC; Projet d’Amélioration de la Qualité de l’Education (PAQUED). www.eddataglobal.com.

  54. RTI [Research Triangle Institute] (2014b). Indonesia: The National Early Grade Reading Assessment (EGRA) and Snapshot of School Management Effectiveness (SSME) survey report of findings. Eddata II Technical and Managerial Assistance, Task Number 23, Contract Number AID-497-BC-13-00009, Strategic Objective (3 June).

  55. Seymour, P., Aro, H. K. M., & Erkskine, J. M. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94(2), 143–174.

    Article  Google Scholar 

  56. Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55, 151–218.

    Article  Google Scholar 

  57. Share, D. L. (2008). On the Anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134, 584–615.

    Article  Google Scholar 

  58. Simmons, J. P., Nelson, L. D., & Simonsjohn, U. (2011). False-positive psychology undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366.

    Article  Google Scholar 

  59. Simons, D. J., & Chabris, C. F. (2011). What people believe about how memory works: A representative survey of the U.S. population. PLoS ONE, 6(8), e22757.

    Article  Google Scholar 

  60. Speelman, C., & Kirsner, K. (2005). Beyond the learning curve: The construction of mind. New York, NY: Oxford University Press.

    Google Scholar 

  61. Thomas, M. S. C., & Knowland, V. (2009). Sensitive periods in brain development: Implications for education policy. European Psychiatric Review, 2(1), 17–20.

    Google Scholar 

  62. UNESCO (2015). Education for All 2000-2015: Achievements and challenges. Education for All Global Monitoring Report. Paris: UNESCO.

  63. USAID (2011). Education opportunity through learning: USAID education strategy. http://pdf.usaid.gov/pdf_docs/Pdacq946.pdf.

  64. van Orden, G. C. (1987). A ROWS is a ROSE: Spelling, sound, and reading. Memory and Cognition, 15(3), 181–198.

    Article  Google Scholar 

  65. van Orden, G. C., Pennington, B. F., & Stone, G. O. (2001). What do double dissociations prove? Cognitive Science, 25(1), 111–172.

    Article  Google Scholar 

  66. Warrington, E., & Weiskrantz, L. (1982). Amnesia: A disconnection syndrome? Neuropsychologia, 20, 233–248.

    Article  Google Scholar 

  67. Winthrop, R., & McGivney, E. (2015). Why wait 100 years? Bridging the gap in global education. Washington, DC: Brookings Institution.

    Google Scholar 

  68. World Bank (2015). World development report. Washington, DC: World Bank.

    Google Scholar 

  69. Wymbs, N. F., Bastian, A. J., & Celnik, P. A. (2016). Motor skills are strengthened through reconsolidation. Current Biology, 26(3), 338–343.

    Article  Google Scholar 

  70. Zafeirakou, A. (2014). Going to scale with literacy programs: Evidence-based practices from the Gambia. GPE Working Paper Series on Learning. Washington DC: World Bank.

  71. Ziegler, J. C., Perry, C., & Zorzi, M. (2014). Modelling reading development through phonological decoding and self-teaching: Implications for dyslexia. Philosophical Transactions of the Royal Society B, 369(1634), 20120397.

    Article  Google Scholar 

  72. Zoccolotti, P., De Luca, M., Di Pace, E., Gasperini, F., Judica, A., & Spinelli, D. (2005). Word length effect in early reading and in developmental dyslexia. Brain and Language, 93(3), 369–373.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Helen Abadzi.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abadzi, H. Turning a molehill into a mountain? How reading curricula are failing the poor worldwide. Prospects 46, 319–334 (2016). https://doi.org/10.1007/s11125-017-9394-9

Download citation

Keywords

  • Reading
  • Literacy
  • Early grade reading
  • Visual word form area
  • Comprehension
  • Words per minute
  • Reading fluency