, Volume 46, Issue 2, pp 249–264 | Cite as

Physiology and assessment as low-hanging fruit for education overhaul

  • Sidarta RibeiroEmail author
  • Natália Bezerra Mota
  • Valter da Rocha Fernandes
  • Andrea Camaz Deslandes
  • Guilherme Brockington
  • Mauro Copelli
Open File


Physiology and assessment constitute major bottlenecks of school learning among students with low socioeconomic status. The limited resources and household overcrowding typical of poverty produce deficits in nutrition, sleep, and exercise that strongly hinder physiology and hence learning. Likewise, overcrowded classrooms hamper the assessment of individual learning with enough temporal resolution to make individual interventions effective. Computational measurements of learning offer hope for low-cost, fast, scalable, and yet personalized academic evaluation. Improvement of school schedules by reducing lecture time in favor of naps, exercise, meals, and frequent automated assessments of individual performance is an easily achievable goal for education.


Sleep Nutrition Exercise Assessment Learning 


  1. Alaimo, K., Olson, C. M., & Frongillo, E. A. Jr. (2001). Food insufficiency and American school-aged children’s cognitive, academic, and psychosocial development. Pediatrics, 108(1), 44–53.Google Scholar
  2. Arber, S., Bote, M., & Meadows, R. (2009). Gender and socio-economic patterning of self-reported sleep problems in Britain. Social Science and Medicine, 68(2), 281–289. doi: 10.1016/j.socscimed.2008.10.016.CrossRefGoogle Scholar
  3. Ardoy, D. N., Fernández-Rodríguez, J. M., Jiménez-Pavón, D., Castillo, R., Ruiz, J. R., & Ortega, F. B. (2014). A physical education trial improves adolescents’ cognitive performance and academic achievement: The EDUFIT study. Scandinavian Journal of Medicine and Science in Sports, 24(1), e52–e61. doi: 10.1111/sms.12093.CrossRefGoogle Scholar
  4. Bedi, G., Carrillo, F., Cecchi, G., Slezak, D. F., Sigman, M., Mota, N., Ribeiro, S., Javitt, D., Copelli, M., & Corcoran, C. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. npj Schizophrenia, 1, 15030. doi: 10.1038/npjschz.2015.30.CrossRefGoogle Scholar
  5. Beebe, D. W., Simon, S., Summer, S., Hemmer, S., Strotman, D., & Dolan, L. M. (2013). Dietary intake following experimentally restricted sleep in adolescents. Sleep, 36(6), 827–834. doi: 10.5665/sleep.2704.CrossRefGoogle Scholar
  6. Berchicci, M., Pontifex, M. B. B., Drollette, E. S. S., Pesce, C., Hillman, C. H. H., & Di Russo, F. (2015). From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health. Neuroscience, 298, 211–219. doi: 10.1016/j.neuroscience.2015.04.028.CrossRefGoogle Scholar
  7. Bertola, L., Mota, N. B., Copelli, M., Rivero, T., Diniz, B. R., Romano-Silva, M. A., et al. (2014). Graph analysis of verbal fluency test discriminate between patients with Alzheimer’s disease, mild cognitive impairment and normal elderly controls. Frontiers in Aging Neuroscience, 6, 1–10. doi: 10.3389/fnagi.2014.00185.Google Scholar
  8. Bliwise, D. L. (1996). Historical change in the report of daytime fatigue. Sleep, 19, 462–464.CrossRefGoogle Scholar
  9. Bonnet, M., & Arand, D. (1995). We are chronically sleep deprived. Sleep, 18, 908–911.CrossRefGoogle Scholar
  10. Broman, J. E., Lundh, L. G., & Hetta, J. (1996). Insufficient sleep in the general population. Neurophysiologie Clinique, 26, 30–39.CrossRefGoogle Scholar
  11. Budde, H., Voelcker-Rehage, C., Pietrabyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219–223. doi: 10.1016/j.neulet.2008.06.024.CrossRefGoogle Scholar
  12. Buxton, O. M., & Marcelli, E. (2010). Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Social Science and Medicine, 71(5), 1027–1036. doi: 10.1016/j.socscimed.2010.05.041.CrossRefGoogle Scholar
  13. Cardeal, C. M., Pereira, L. A., Da Silva, P. F., & De França, N. M. (2013). Efeito de um programa escolar de estimulação motora sobre desempenho da função executiva e atenção em crianças. Motricidade, 9(3), 44–56. doi: 10.6063/motricidade.9(3).762.CrossRefGoogle Scholar
  14. Casey, P., Goolsby, S., Berkowitz, C., Frank, D., Cook, J., Cutts, D., et al. (2004). Maternal depression, changing public assistance, food security, and child health status. Pediatrics, 113, 298–304.CrossRefGoogle Scholar
  15. Castro, L. S., Castro, J., Hoexter, M. Q., Quarantini, L. C., Kauati, A., Mello, L. E., et al. (2013). Depressive symptoms and sleep: A population-based polysomnographic study. Psychiatry Research, 210(3), 906–912. doi: 10.1016/j.psychres.2013.08.036.CrossRefGoogle Scholar
  16. CDC [Centers for Disease Control and Prevention] (2013). Vital and health statistics. Health Behaviors of Adults: United States, 20082010, 257(10).Google Scholar
  17. Chaddock, L., Erickson, K. I., Prakash, R. S., VanPatter, M., Voss, M. W., Pontifex, M. B., et al. (2010). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32, 249–256. doi: 10.1159/000316648.CrossRefGoogle Scholar
  18. Chaddock, L., Pontifex, M. B., Hillman, C. H., & Kramer, A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of International Neuropsychological Society, 17, 975–985. doi: 10.1017/S1355617711000567.CrossRefGoogle Scholar
  19. Chambers, E. C., Pichardo, M. S., & Rosenbaum, E. (2014). Sleep and the housing and neighborhood environment of urban Latino adults living in low-income housing: The AHOME study. Behavioral Sleep Medicine, 11, 1–16.Google Scholar
  20. Chen, M. D., Tsai, H. Y., Wang, C. C., & Wuang, Y. P. (2015). The effectiveness of racket-sport intervention on visual perception and executive functions in children with mild intellectual disabilities and borderline intellectual functioning. Neuropsychiatric Disease and Treatment, 11, 2287–2297. doi: 10.2147/NDT.S89083.Google Scholar
  21. Crova, C., Struzzolino, I., Marchetti, R., Masci, I., Vannozzi, G., Forte, R., et al. (2014). Cognitively challenging physical activity benefits executive function in overweight children. Journal of Sports Sciences, 32(3), 201–211. doi: 10.1080/02640414.2013.828849.CrossRefGoogle Scholar
  22. Deslandes, A., Moraes, H., Ferreira, C., Veiga, H., Silveira, H., Mouta, R., et al. (2009). Exercise and mental health: Many reasons to move. Neuropsychobiology, 59(4), 191–198.CrossRefGoogle Scholar
  23. Diamond, M. C. (2001). Response of the brain to enrichment. Anais da Academia Brasileira de Ciências, 73, 210–220. doi: 10.1590/S0001-37652001000200006.CrossRefGoogle Scholar
  24. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. doi: 10.1146/annurev-psych-113011-143750.CrossRefGoogle Scholar
  25. Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959–964. doi: 10.1126/science.1204529.CrossRefGoogle Scholar
  26. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114–126. doi: 10.1038/nrn2762.CrossRefGoogle Scholar
  27. Ding, M., Keiley, M. K., Garza, K. B., Duffy, P. A., & Zizza, C. A. (2015). Food insecurity is associated with poor sleep outcomes among US adults. Journal of Nutrition, 145(3), 615–621. doi: 10.3945/jn.114.199919.CrossRefGoogle Scholar
  28. Ding, M., Wilson, N. L., Garza, K. B., & Zizza, C. A. (2014). Undiagnosed prediabetes among food insecure adults. American Journal of Health Behavior, 38, 225–233.CrossRefGoogle Scholar
  29. Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., et al. (2016). Physical activity, fitness, cognitive function, and academic achievement in children. Medicine and Science in Sports and Exercise, 48(6), 1197–1222.CrossRefGoogle Scholar
  30. Duman, R. S. (2005). Neurotrophic factors and regulation of mood: Role of exercise, diet and metabolism. Neurobiology of Aging, 26(1), 88–93. doi: 10.1016/j.neurobiolaging.2005.08.018.CrossRefGoogle Scholar
  31. Erath, S. A., Tu, K. M., Buckhalt, J. A., & El-Sheikh, M. (2015). Associations between children’s intelligence and academic achievement: The role of sleep. Journal of Sleep Research, 24(5), 510–513. doi: 10.1111/jsr.12281.CrossRefGoogle Scholar
  32. Fedewa, A., & Ahn, S. (2011). The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Research Quarterly for Exercise and Sport, 82, 521–535. doi: 10.5641/027013611X13275191444107.CrossRefGoogle Scholar
  33. Fernandes, V. R., Ribeiro, M. L., Melo, T., Maciel-Pinheiro, P. D., Guimarães, T. T., Araújo, N. B., et al. (2016). Motor coordination correlates with academic achievement and cognitive function in children. Frontiers in Psychology, Specialty Section: Educational Psychology. doi: 10.3389/fpsyg.2016.00318.Google Scholar
  34. Fiuza-Luces, C., Garatachea, N., Berger, N. A., & Lucia, A. (2013). Exercise is the real polypill. Physiology, 28, 330–358. doi: 10.1152/physiol.00019.2013.CrossRefGoogle Scholar
  35. Gold, P. E., & Korol, D. L. (2012). Making memories matter. Frontiers in Integrative Neuroscience, 6, 116. doi: 10.3389/fnint.2012.00116.CrossRefGoogle Scholar
  36. Goldin, A. P., Hermida, M. J., Shaloma, D. E., Costa, M. E., Lopez-Rosenfeld, M., Segretin, M. S., et al. (2014). Far transfer to language and math of a short software-based gaming intervention. Proceedings of the National Academy of Sciences, 111(17), 6443–6448. doi: 10.1073/pnas.1320217111.CrossRefGoogle Scholar
  37. Grandner, M. A., Jackson, N., Gerstner, J. R., & Knutson, K. L. (2013). Dietary nutrients associated with short and long sleep duration: Data from a nationally representative sample. Appetite, 64(C), 71–80. doi: 10.1016/j.appet.2013.01.004.CrossRefGoogle Scholar
  38. Grissmer, D., Grimm, K. J., Aiyer, S. M., Murrah, W. M., & Steele, J. S. (2010). Fine motor skills and early comprehension of the world: Two new school readiness indicators. Developmental Psychology, 46, 1008–1017. doi: 10.1037/a0020104.CrossRefGoogle Scholar
  39. Gupta, N. K., Mueller, W. H., Chan, W., & Meininger, J. C. (2002). Is obesity associated with poor sleep quality in adolescents? American Journal of Human Biology, 14(6), 762–768. doi: 10.1002/ajhb.10093.CrossRefGoogle Scholar
  40. Haapala, E. A., Poikkeus, A. M., Tompuri, T., Kukkonen-Harjula, K., Leppänen, P. H. T., Lindi, V., et al. (2014). Associations of motor and cardiovascular performance with academic skills in children. Medicine and Science in Sports and Exercise, 46(5), 1016–1024. doi: 10.1249/MSS.0000000000000186.CrossRefGoogle Scholar
  41. Hale, L., Berger, L. M., LeBourgeois, M. K., & Brooks-Gunn, J. (2009). Social and demographic predictors of preschoolers’ bedtime routines. Journal of Develeopmental and Behavior Pediatrics, 30(5), 394–402. doi: 10.1097/DBP.0b013e3181ba0e64.CrossRefGoogle Scholar
  42. Halperin, J. M., & Healey, D. M. (2011). The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: Can we alter the developmental trajectory of ADHD? Neuroscience and Biobehavioral Reviews, 35, 621–634. doi: 10.1016/j.neubiorev.2010.07.006.CrossRefGoogle Scholar
  43. Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behav Brain Sci., 33(2–3), 61–83. doi: 10.1017/S0140525X0999152X.CrossRefGoogle Scholar
  44. Hill, T. D., Burdette, A. M., & Hale, L. (2009). Neighborhood disorder, sleep quality, and psychological distress: Testing a model of structural amplification. Health & Place, 4, 1006–1013. doi: 10.1016/j.healthplace.2009.04.001.CrossRefGoogle Scholar
  45. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65.CrossRefGoogle Scholar
  46. Hogenkamp, P. S., Nilsson, E., Nilsson, V. C., Chapman, C. D., Vogel, H., Lundberg, L. S., et al. (2013). Acute sleep deprivation increases portion size and affects food choice in young men. Psychoneuroendocrinology, 38(9), 1668–1674. doi: 10.1016/j.psyneuen.2013.01.012.CrossRefGoogle Scholar
  47. Hyyppa, M. T., Kronholm, E., & Alanen, E. (1997). Quality of sleep during economic recession in Finland: A longitudinal cohort study. Social Science and Medicine, 45, 731–738.CrossRefGoogle Scholar
  48. Jarrin, D. C., McGrath, J. J., & Drake, C. L. (2013). Beyond sleep duration: Distinct sleep dimensions are associated with obesity in children and adolescents. International Journal of Obesity, 37, 552–558. doi: 10.1038/ijo.2013.4.CrossRefGoogle Scholar
  49. Jarrin, D. C., McGrath, J. J., & Quon, E. C. (2014). Objective and subjective socioeconomic gradients exist for sleep in children and adolescents. Health Psychology, 33(3), 301–305. doi: 10.1037/a0032924.CrossRefGoogle Scholar
  50. Knutson, K. L. (2011). Association between sleep duration and body size differs among three Hispanic groups. American Journal of Human Biology, 23(1), 138–141. doi: 10.1002/ajhb.21108.CrossRefGoogle Scholar
  51. Kohl, H. W., & Cook, H. D. (2013). Educating the student body: Taking physical activity and physical education to school. Washington, DC: National Academies Press. doi: 10.17226/18314.Google Scholar
  52. Korol, D. L., & Gold, P. E. (1998). Glucose, memory, and aging. American Journal of Clin Nutrition, 67(4), 764S–771S.Google Scholar
  53. Kurdziel, L., Duclos, K., & Spencer, R. M. (2013). Sleep spindles in midday naps enhance learning in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 110(43), 17267–17272. doi: 10.1073/pnas.1306418110.CrossRefGoogle Scholar
  54. Laraia, B. A., Siega-Riz, A. M., Gundersen, C., & Dole, N. (2006). Psychosocial factors and socioeconomic indicators are associated with household food insecurity among pregnant women. Journal of Nutrition, 136, 177–182.Google Scholar
  55. Lees, C., & Hopkins, J. (2013). Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: A systematic review of randomized control trials. Prevention of Chronic Disease, 10, E174. doi: 10.5888/pcd10.130010.Google Scholar
  56. Lemos, N., Weissheimer, J., & Ribeiro, S. (2014). Naps in school can enhance the duration of declarative memories learned by adolescents. Frontiers in Systems Neuroscience. doi: 10.3389/fnsys.2014.00103.Google Scholar
  57. Lima, P. F., Medeiros, A. L., & Araujo, J. F. (2002). Sleep-wake pattern of medical students: Early versus late class starting time. Brazilian Journal of Medical and Biological Research, 35(11), 1373–1377.CrossRefGoogle Scholar
  58. Liu, X., Liu, L., & Wang, R. (2003). Bed sharing, sleep habits, and sleep problems among Chinese school-aged children. Sleep, 26(7), 839–844.CrossRefGoogle Scholar
  59. Lomas, D., Patel, K., Forlizzi, J. L., & Koedinger, K. R. (2013). Optimizing challenge in an educational game using large-scale design experiments. In Proceedings of the SIGCHI conference on human factors in computing systems. CHI’13—CHI conference on human factors in computing systems, Paris, April 27–May 02, 2013. doi: 10.1145/2470654.2470668.
  60. Lopez-Rosenfeld, M., Goldin, A. P., Lipina, S., Sigman, M., & Slezak, D. F. (2013). Mate Marote: A flexible automated framework for large-scale educational interventions. Computers & Education, 68, 307–313.CrossRefGoogle Scholar
  61. Mackenbach, J. P., & Howden-Chapman, P. (2003). New perspectives on socioeconomic inequalities in health. Perspectives in Biology and Medicine, 46, 428–444.CrossRefGoogle Scholar
  62. Mackenbach, J. P., Kunst, A. E., Cavelaars, A. E., Groenhof, F., & Geurts, J. J. (1997). Socioeconomic inequalities in morbidity and mortality in Western Europe. The EU Working Group on Socioeconomic Inequalities in Health. Lancet, 349, 1655–1659.CrossRefGoogle Scholar
  63. Magnisalis, I., Demetriadis, S., & Karakostas, A. (2011). Adaptive and intelligent systems for collaborative learning support: A review of the field. IEEE Transactions on Learning Technologies, 4(1), 5–20.CrossRefGoogle Scholar
  64. Mander, B. A., Santhanam, S., Saletin, J. M., & Walker, M. P. (2011). Wake deterioration and sleep restoration of human learning. Current Biology, 21(5), R183–R184. doi: 10.1016/j.cub.2011.01.019.CrossRefGoogle Scholar
  65. Masley, S., Roetzheim, R., & Gualtieri, T. (2009). Aerobic exercise enhances cognitive flexibility. Journal of Clinical Psychology in Medical Settings, 16, 186–193. doi: 10.1007/s10880-009-9159-6.CrossRefGoogle Scholar
  66. Matthews, K. A., Hall, M., & Dahl, R. E. (2014). Sleep in healthy black and white adolescents. Pediatrics, 133(5), e1189–e1196. doi: 10.1542/peds.2013-2399.CrossRefGoogle Scholar
  67. McNay, E. C., & Gold, P. E. (2002). Food for thought: Fluctuations in brain extracellular glucose provide insight into the mechanisms of memorymodulation. Behavioral and Cognitive Neuroscience Review, 1(4), 264–280.CrossRefGoogle Scholar
  68. Méndez, A., Martín, A., Pires, A. C., Vásquez, A., Maiche, A., González, F., et al. (2015). Temporal perception and delay aversion: A videogame screening tool for the early detection of ADHD. Revista Argentina de Ciancias del Comportamiento, 7(3), 90–101.Google Scholar
  69. Mitler, M. M., Miller, J. C., Lipsitz, J. J., Walsh, J. K., & Wylie, C. D. (1997). The sleep of long-haul truck drivers. New England Journal of Medicine, 337, 755–762. doi: 10.1056/NEJM199709113371106.CrossRefGoogle Scholar
  70. Moreno, C. R. C., Vasconcelos, S., Marqueze, E. C., Lowden, A., Middleton, B., Fischer, F. M., et al. (2015). Sleep patterns in Amazon rubber tappers with and without electric light at home. Scientific Reports, 5, 14074. doi: 10.1038/srep14074.CrossRefGoogle Scholar
  71. Mota, N. B., Copelli, M., & Ribeiro, S. (2016). Computational tracking of mental health in youth: Latin American contributions to a low-cost and effective solution for early psychiatric diagnosis. New Directions for Child and Adolescent Development (special issue on Child and adolescent development in Latin America), 152, 59–69.CrossRefGoogle Scholar
  72. Mota, N. B., Furtado, R., Maia, P. P. C., Copelli, M., & Ribeiro, S. (2014). Graph analysis of dream reports is especially informative about psychosis. Scientific Reports, 4, 3691.CrossRefGoogle Scholar
  73. Mota, N. B., Vasconcelos, N. A. P., Lemos, N., Pieretti, A. C., Kinouchi, O., Cecchi, G. A., et al. (2012). Speech graphs provide a quantitative measure of thought disorder in psychosis. PLoS ONE, 7(4), e34928. doi: 10.1371/journal.pone.0034928.CrossRefGoogle Scholar
  74. Mota, N. B., Weissheimer, J., Madruga, B., Adamy, N., Bunge, S. A., Copelli, M., et al. (2016). A naturalistic assessment of the organization of children’s memories predicts cognitive functioning and reading ability. Mind, Brain and Education, 10, 184–195.CrossRefGoogle Scholar
  75. Ng, S. W., & Popkin, B. M. (2012). Time use and physical activity: A shift away from movement across the globe. Obesity Reviews, 13(8), 659–680. doi: 10.1111/j.1467-789X.2011.00982.x.CrossRefGoogle Scholar
  76. Odic, D., Lisboa, J. V., Eisinger, R., Olivera, M. G., Maiche, A., & Halberda, J. (2016). Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica, 163, 17–26.CrossRefGoogle Scholar
  77. OECD (2014). Education at a glance: OECD indicators. Paris: OECD. doi: 10.1787/eag-2014-en.Google Scholar
  78. OECD (2016). PISA 2015 results in focus. PISA in Focus, 67, Paris: OECD. doi:  10.1787/aa9237e6-en.
  79. Okun, M. L., Tolge, M., & Hall, M. (2014). Low socioeconomic status negatively affects sleep in pregnant women. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 43(2), 160–167. doi: 10.1111/1552-6909.12295.CrossRefGoogle Scholar
  80. Peixoto, C. A., da Silva, A. G., Carskadon, M. A., Louzada, F. M., Pereira, E. F., Moreno, C., et al. (2009). Adolescents living in homes without electric lighting have earlier sleep times. Behavioral Sleep Medicine, 7(2), 73–80. doi: 10.1080/15402000902762311.CrossRefGoogle Scholar
  81. Peltzer, K., & Pengpid, S. (2015). Nocturnal sleep problems among university students from 26 countries. Sleep Breath, 19(2), 499–508. doi: 10.1007/s11325-014-1036-3.CrossRefGoogle Scholar
  82. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643. doi: 10.1073/pnas.0611721104.CrossRefGoogle Scholar
  83. Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., et al. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience, 23, 1332–1345. doi: 10.1162/jocn.2010.21528.CrossRefGoogle Scholar
  84. Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 20(4), 537–556.Google Scholar
  85. Seligman, H. K., Bindman, A. B., Vittinghoff, E., Kanaya, A. M., & Kushel, M. B. (2007). Food insecurity is associated with diabetes mellitus: Results from the National Health Examination and Nutrition Examination Survey (NHANES) 1999–2002. Journal of General Internal Medicine, 22, 1018–1023.CrossRefGoogle Scholar
  86. Seligman, H. K., Laraia, B. A., & Kushel, M. B. (2010). Food insecurity is associated with chronic disease among low-income NHANES participants. Journal of Nutrition, 140, 304–310.CrossRefGoogle Scholar
  87. Sigman, M., Peña, M., Goldin, A. P., & Ribeiro, S. (2014). Neuroscience and education: Prime time to build the bridge. Nature Neuroscience, 17, 497–502.CrossRefGoogle Scholar
  88. Simonelli, G., Leanza, Y., Boilard, A., Hyland, M., Augustinavicius, J. L., Cardinali, D. P., et al. (2013). Sleep and quality of life in urban poverty: The effect of a slum housing upgrading program. Sleep, 36(11), 1669–1676. doi: 10.5665/sleep.3124.CrossRefGoogle Scholar
  89. Solari, C. D., & Mare, R. D. (2012). Housing crowding effects on children’s wellbeing. Social Science Research, 41(2), 464–476. doi: 10.1016/j.ssresearch.2011.09.012.CrossRefGoogle Scholar
  90. Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437, 1272–1278. doi: 10.1038/nature04286.CrossRefGoogle Scholar
  91. Stranges, S., Tigbe, W., Gómez-Olivé, F. X., Thorogood, M., & Kandala, N. B. (2012). Sleep problems: An emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep, 35(8), 1173–1181.CrossRefGoogle Scholar
  92. Tayie, F. A., & Zizza, C. A. (2009). Food insecurity and dyslipidemia among adults in the United States. Preventive Medicine, 48, 480–485.CrossRefGoogle Scholar
  93. Teixeira, L. R., Fischer, F. M., de Andrade, M. M., Louzada, F. M., & Nagai, R. (2004). Sleep patterns of day-working, evening high-schooled adolescents of São Paulo, Brazil. Chronobiology International, 21(2), 239–252.CrossRefGoogle Scholar
  94. Tellez, L. A., Han, W., Zhang, X., Ferreira, T. L., Perez, I. O., Shammah-Lagnado, S. J., et al. (2016). Separate circuitries encode the hedonic and nutritional values of sugar. Nature Neuroscience, 19(3), 465–470. doi: 10.1038/nn.4224.CrossRefGoogle Scholar
  95. Tsai, C. L. (2009). The effectiveness of exercise intervention on inhibitory control in children withdevelopmental coordination disorder: Using a visuospatial attention paradigm as a model. Research in Developmental Disabilities, 30(6), 1268–1280. doi: 10.1016/j.ridd.2009.05.001.CrossRefGoogle Scholar
  96. Umlauf, M. G., Bolland, A. C., Bolland, K. A., Tomek, S., & Bolland, J. M. (2015). The effects of age, gender, hopelessness, and exposure to violence on sleep disorder symptoms and daytime sleepiness among adolescents in impoverished neighborhoods. Journal of Youth Adolescence, 44(2), 518–542. doi: 10.1007/s10964-014-0160-5.CrossRefGoogle Scholar
  97. UNESCO (2011). World data on education. Paris: UNESCO.Google Scholar
  98. UN-HABITAT (2003). The challenge of slums: Global report on human settlements. London: Earthscan.Google Scholar
  99. UN-HABITAT (2007). State of the world’s cities 2006/7. London: Earthscan.Google Scholar
  100. Valladolid-Acebes, I., Stucchi, P., Cano, V., Fernández-Alfonso, M. S., Merino, B., Gil-Ortega, M., et al. (2011). High-fat diets impair spatial learning in the radial-arm maze in mice. Neurobiology of Learning and Memory, 95(1), 80–85. doi: 10.1016/j.nlm.2010.11.007.CrossRefGoogle Scholar
  101. Van Cauter, E., & Spiegel, K. (1999). Sleep as a mediator of the relationship between socioeconomic status and health: A hypothesis. Annals of the New York Academy of Sciences, 896, 254–261.CrossRefGoogle Scholar
  102. Van der Fels, I. M. J., Te Wierike, S. C. M., Hartman, E., Elferink-Gemser, M. T., Smith, J., & Visscher, C. (2015). The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. Journal of Science and Medicine in Sport, 18, 697–703. doi: 10.1016/j.jsams.2014.09.007.CrossRefGoogle Scholar
  103. Van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neuroscience, 32, 283–290. doi: 10.1016/j.tins.2008.12.007.Exercise.CrossRefGoogle Scholar
  104. Van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270. doi: 10.1038/6368.CrossRefGoogle Scholar
  105. Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the “sit”: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscientific Research, 715, 699–715. doi: 10.1002/jnr.CrossRefGoogle Scholar
  106. Voss, M. W., Chaddock, L., Kim, J. S., Vanpatter, M., Pontifex, M. B., Raine, L. B., et al. (2011). Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience, 199, 166–176. doi: 10.1016/j.neuroscience.2011.10.009.CrossRefGoogle Scholar
  107. Walker, E., Rummel, N., & Koedinger, K. R. (2014). Adaptive intelligent support to improve peer tutoring in algebra. International Journal of Artificial Intelligence in Education, 24(1), 33–61. doi: 10.1007/s40593-013-0001-9.CrossRefGoogle Scholar
  108. Webb, W. B., & Agnew, H. W. (1975). Are we chronically sleep deprived? Bulletin of the Psychonomic Society, 6, 47–48.CrossRefGoogle Scholar
  109. Whitaker, R. C., Phillips, S. M., & Orzol, S. M. (2006). Food insecurity and the risks of depression and anxiety in mothers and behavior problems in their preschool-aged children. Pediatrics, 118, e859–e868.CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  • Sidarta Ribeiro
    • 1
    Email author
  • Natália Bezerra Mota
    • 1
  • Valter da Rocha Fernandes
    • 2
  • Andrea Camaz Deslandes
    • 3
  • Guilherme Brockington
    • 4
  • Mauro Copelli
    • 5
  1. 1.Instituto do CérebroUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Programa de Pós Graduação em Ciências do Exercício e do EsporteUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Departamento de Ciências Exatas e da TerraUniversidade Federal de São PauloSão PauloBrazil
  5. 5.Departamento de FísicaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations