, Volume 46, Issue 2, pp 199–213 | Cite as

The various forms of neuroplasticity: Biological bases of learning and teaching

  • Fernanda Tovar-Moll
  • Roberto LentEmail author
Open File


Education is a socially structured form of learning. It involves the brains of different players – students, teachers, family members, and others – in permanent interaction. The biological set of mechanisms by which these brains receive, encode, store, and retrieve mutually exchanged information is called “neuroplasticity”. This is the ability that enables developing and adult brains to react and adapt at different coexisting levels - from molecules to neurons, circuits, networks, persons, and societies. This article aims to discuss the major current concepts of neuroplasticity research to help policymakers, researchers, and educators bridge them to learning and teaching models and practices.


Synaptic plasticity Developmental plasticity Neuroeducation Synaptogenesis Long-distance plasticity Circuit plasticity Network plasticity 


  1. Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Fiber composition of the human corpus callosum. Brain Research, 598, 143–153.CrossRefGoogle Scholar
  2. Aimone, J. B., Li, Y., Lee, S. W., Clemenson, G. D., Deng, W., & Gage, F. H. (2014). Regulation and function of adult neurogenesis: From genes to cognition. Physiological Reviews, 94, 991–1026.CrossRefGoogle Scholar
  3. Amodio, D. M., & Frith, C. D. (2006). Meetings of minds: The medial frontal cortex and social cognition. Nature Reviews. Neuroscience, 7, 268–277.CrossRefGoogle Scholar
  4. Anders, S., Heinzle, J., Weiskopf, N., Ethover, T., & Haynes, J. D. (2011). Flow of affective information between communicating brains. Neuroimage, 54, 439–446.CrossRefGoogle Scholar
  5. Astolfi, L., Toppi, J., Fallani, F. V., Vecchiato, G., Cincotti, F., Wilke, C. T., et al. (2011). Imaging the social brain by simultaneous hyperscanning during subject interaction. IEEE Intelligence Systems, 26, 38–45.CrossRefGoogle Scholar
  6. Bado, P., Engel, A., de Oliveira Souza, R., Bramati, I. E., Paiva, F. F., Basilio, R., et al. (2014). Functional dissociation of ventral frontal and dorsomedial default mode network components during resting state and emotional autobiographical recall. Human Brain Mapping, 35, 3302–3313.CrossRefGoogle Scholar
  7. Bandeira, F., Lent, R., & Herculano-Houzel, S. (2009). Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proceedings of the National Academy of Sciences of the United States of America, 106, 14110–14113.CrossRefGoogle Scholar
  8. Beijamini, F., Pereira, S. I. R., Cini, F. A., & Louzada, F. M. (2014). After being challenged by a video game problem, sleep increases the chance to solve it. PLoS ONE, 9(1), e84342.CrossRefGoogle Scholar
  9. Bernardinelli, Y., Randall, J., Janett, E., Nikonenko, I., Konig, S., Jones, E. V., et al. (2014). Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Current Biology, 24, 1679–1688.CrossRefGoogle Scholar
  10. Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., Buchholz, B. A., Fink, D., Björk-Eriksson, T., et al. (2006). Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences of the United States of America, 103, 12564–12568.CrossRefGoogle Scholar
  11. Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate gyrus of the anesthetized rabbit following stimulation of the performant path. Journal of Physiology, 232, 331–356.CrossRefGoogle Scholar
  12. Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25, 92–104.CrossRefGoogle Scholar
  13. Bonin, R. P., & De Koninck, Y. (2015). Reconsolidation and the regulation of plasticity: Moving beyond memory. Trends in Neurosciences, 38, 336–344.CrossRefGoogle Scholar
  14. Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review., 123, 600–612.CrossRefGoogle Scholar
  15. Bruer, J. T. (1997). Education and the brain: A bridge too far. Education Research, 26, 4–16.CrossRefGoogle Scholar
  16. Byrnes, J. P., & Fox, N. A. (1998). The educational relevance of research in cognitive neuroscience. Educational Psychology Review, 10, 297–342.CrossRefGoogle Scholar
  17. Chang, Y. (2014). Reorganization and plastic changes of the human brain associated with skill learning and expertise. Frontiers in Human Neuroscience, 8, 35.Google Scholar
  18. Chédotal, A., & Richards, L. J. (2010). Wiring the brain: The biology of neuronal guidance. Cold Spring Harbor Perspectives in Biology, 2, a001917.CrossRefGoogle Scholar
  19. Chen, R., Cohen, L. G., & Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111, 761–773.CrossRefGoogle Scholar
  20. Connor, S. A., & Wang, Y. T. (2015). A place at the table: LTD as a mediator of memory genesis. The Neuroscientist, 22, 359–371.CrossRefGoogle Scholar
  21. Cross, E. S., Kraemer, D. J., Hamilton, A. F., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315–326.CrossRefGoogle Scholar
  22. Da Costa, N. M., & Martin, K. A. (2013). Sparse recognition of brain circuits: Or, how to survive without a microscopic connectome. Neuroimage, 80, 27–36.CrossRefGoogle Scholar
  23. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–398.CrossRefGoogle Scholar
  24. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330, 1359–1364.CrossRefGoogle Scholar
  25. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews. Neuroscience, 11, 114–126.CrossRefGoogle Scholar
  26. Diniz, L. P., Matias, I. C. P., Garcia, M. N., & Gomes, F. C. A. (2014). Astrocytic control of neural circuit formation: Highlights on TGF-beta signaling. Neurochemistry International, 78, 18–27.CrossRefGoogle Scholar
  27. Douglas, R. J., & Martin, K. A. C. (2004). Neuronal circuits of the neocortex. Annual Reviews of Neuroscience, 27, 419–451.CrossRefGoogle Scholar
  28. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311–312.CrossRefGoogle Scholar
  29. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017–3022.CrossRefGoogle Scholar
  30. Fenlon, L. R., & Richards, L. J. (2015). Contralateral targeting of the corpus callosum in normal and pathological brain function. Trends in Neurosciences, 38, 264–272.CrossRefGoogle Scholar
  31. Fields, R. D., Araque, A., Johansen-Berg, H., Lim, S.-S., Lynch, G., Nave, K.-A., et al. (2014). Glial biology in learning and cognition. Neuroscientist, 20, 426–431.CrossRefGoogle Scholar
  32. Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage, 111, 611–621.CrossRefGoogle Scholar
  33. Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533–536.CrossRefGoogle Scholar
  34. Friston, K. J., & Frith, C. D. (2015). Active inference, communication and hermeneutics. Cortex, 68, 129–143.CrossRefGoogle Scholar
  35. Frith, C. D. (2007). The social brain? Philosophical Transactions of the Royal Society of London Biological Sciences, 362, 671–678.CrossRefGoogle Scholar
  36. Froes, M. M., & Menezes, J. R. L. (2002). Coupled heterocellular arrays in the brain. Neurochemistry International, 41, 367–375.CrossRefGoogle Scholar
  37. Garcez, P. P., Henrique, N. P., Furtado, D. A., Bolz, J., Lent, R., & Uziel, D. (2007). Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection. European Journal of Neuroscience, 25, 1384–1394.CrossRefGoogle Scholar
  38. Gazzaniga, M. S. (2005). Forty-five years of split-brain research and still going strong. Nature Reviews. Neuroscience, 6, 653–659.CrossRefGoogle Scholar
  39. Giese, K. P., & Mizuno, K. (2013). The roles of protein kinases in learning and memory. Learning and Memory, 20, 540–552.CrossRefGoogle Scholar
  40. Gilmore, A. W., Nelson, S. M., & McDermott, K. B. (2015). A parietal memory network revealed by multiple MRI methods. Trends in Cognitive Sciences, 19, 534–543.CrossRefGoogle Scholar
  41. Gomes da Silva, S., Almeida, A. A., Fernandes, J., Lopim, G. M., Cabral, F. R., Scerni, D. A., et al. (2016). Maternal exercise during pregnancy increases BDNF levels and cell numbers in the hippocampal formation but not in the cerebral cortex of adult rat offspring. PLoS ONE, 11(1), 0147200.CrossRefGoogle Scholar
  42. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.CrossRefGoogle Scholar
  43. Herculano-Houzel, S., Collins, C. E., Wong, P., Kaas, J. H., & Lent, R. (2008). The basic nonuniformity of the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 105, 12593–12598.CrossRefGoogle Scholar
  44. Herdener, M., Esposito, F., di Salle, F., Boller, C., Hilti, C. C., Habermeyer, B., et al. (2010). Musical training induces functional plasticity in human hippocampus. Journal of Neuroscience, 30, 1377–1384.CrossRefGoogle Scholar
  45. Hirata, M., Ikeda, T., Kikuchi, M., Kimura, T., Hiraishi, H., Yoshimura, Y., et al. (2014). Hyperscanning MEG for understanding mother-child cerebral interactions. Frontiers in Human Neuroscience, 8, 118.CrossRefGoogle Scholar
  46. Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., et al. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29, 3019–3025.CrossRefGoogle Scholar
  47. Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology, 324, 113–134.CrossRefGoogle Scholar
  48. Jancke, L. (2009). The plastic human brain. Restorative Neurology and Neuroscience, 27, 521–538.Google Scholar
  49. Jiang, J., Dai, B., Peng, D.-L., Zhu, C.-Z., Liu, L., & Lu, C.-M. (2012). Neural synchronization during face-to-face communication. Journal of Neuroscience, 32, 16064–16069.CrossRefGoogle Scholar
  50. Jobard, G., Crivello, F., & Tzourio-Mazoyer, M. (2003). Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage, 20, 693–712.CrossRefGoogle Scholar
  51. Kandel, E. R. (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Molecular Brain, 5, 14.CrossRefGoogle Scholar
  52. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., & Gage, F. H. (2003). Early determination and long-term persistence of adult-generated new neurons in the hippocampus of adult mice. Development, 130, 391–399.CrossRefGoogle Scholar
  53. Kim, H. (2013). Differential neural activity in the recognition of old versus new events: An activation likelihood estimation meta-analysis. Human Brain Mapping, 34, 814–836.CrossRefGoogle Scholar
  54. Klingberg, T. (2013). The learning brain. New York: Oxford University Press.Google Scholar
  55. Konvalinka, I., & Roepstorff, A. (2012). The two-brain approach: How can mutually interacting brains teach us something about social interaction? Frontiers in Human Neuroscience, 6, 215.CrossRefGoogle Scholar
  56. Krueger, F., McCabe, K., Moll, J., Kriegeskorte, N., Zahn, R., Strenziok, M., et al. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences of the United States of America, 104, 20084–20089.CrossRefGoogle Scholar
  57. Kuhlen, A. K., Allefeld, C., & Haynes, J.-D. (2012). Content-specific coordination of listeners’ to speakers’ EEG during communication. Frontiers in Human Neuroscience, 6, 266.CrossRefGoogle Scholar
  58. Lindenberger, U., Li, S., Gruber, W., & Muller, V. (2009). Brains swinging in concert: Cortical phase synchronization while playing guitar. BMC Neuroscience, 10, 22.CrossRefGoogle Scholar
  59. Liu, T., & Pelowski, M. (2014). Clarifying the interaction types in two-person neuroscience research. Frontiers in Human Neuroscience, 8, 276.Google Scholar
  60. Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381–385.CrossRefGoogle Scholar
  61. Liu, X., Ramirez, S., Redondo, R. L., & Tonegawa, S. (2014). Identification and manipulation of memory engram cells. Cold Spring Harbor Symposia on Quantitative Biology, 79, 59–65.CrossRefGoogle Scholar
  62. Maurer, U., Brem, S., Kranz, F., Bucher, K., Benz, R., Halder, P., et al. (2006). Coarse neural tuning for print peaks when children learn to read. Neuroimage, 33, 749–758.CrossRefGoogle Scholar
  63. McCabe, K., Houser, D., Ryan, L., Smith, V., & Trouard, T. (2001). A functional imaging study of cooperation in two-person reciprocal exchange. Proceedings of the National Academy of Sciences of the United States of America, 98, 11832–11835.CrossRefGoogle Scholar
  64. Meltzoff, A. N., Kuhl, P. K., Movellan, J., & Sejnowski, T. J. (2009). Foundations for a new science of learning. Science, 325, 284–288.CrossRefGoogle Scholar
  65. Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., et al. (2002). Hyperscanning: simultaneous fMRI during linked social interactions. Neuroimage, 16, 1159–1164.CrossRefGoogle Scholar
  66. Ninkovic, J., Mori, T., & Götz, M. (2007). Distinct modes of neuron addition in adult mouse neurogenesis. Journal of Neuroscience, 27, 10906–10911.CrossRefGoogle Scholar
  67. Oberheim, N. A., Wang, X., Goldman, S., & Nedergaard, M. (2006). Astrocytic complexity distinguishes the human brain. Trends in Neuroscience, 29, 547–553.CrossRefGoogle Scholar
  68. Opendak, M., & Gould, E. (2015). Adult neurogenesis: A substrate for experience-dependent change. Trends in Cognitive Sciences, 19, 151–161.CrossRefGoogle Scholar
  69. Osaka, N., Minamoto, T., Yaoi, K., Azuma, M., Shimada, Y. M., & Osaka, M. (2015). How two brains make one synchronized mind in the inferior frontal cortex: fNIRS-based hyperscanning during cooperative singing. Frontiers in Psychology, 6, 1811.CrossRefGoogle Scholar
  70. Pereira, A. C., Huddleston, D. E., Brickmann, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.CrossRefGoogle Scholar
  71. Rakic, P. (1985). Limits of neurogenesis in primates. Science, 227, 1054–1056.CrossRefGoogle Scholar
  72. Rakic, P., & Yakovlev, P. I. (1968). Development of the corpus callosum and cavum septi in man. Journal of Comparative Neurology, 132, 45–72.CrossRefGoogle Scholar
  73. Reed, C. L., Klatzky, R. L., & Halgren, E. (2005). What vs. where in touch: An fMRI study. Neuroimage, 25, 718–726.CrossRefGoogle Scholar
  74. Ribeiro, S. (2012). Sleep and plasticity. Pflugers Archiv–European Journal of Physiology, 463, 111–120.CrossRefGoogle Scholar
  75. Ritter, S. M., Strick, M., Bos, M. W., van Baaren, R. B., & Dijksterhuis, A. (2012). Good morning creativity: Task reactivation during sleep enhances beneficial effect of sleep on creative performance. Journal of Sleep Research, 21, 643–647.CrossRefGoogle Scholar
  76. Rock, C., & Apicella, A. J. (2015). Callosal projections drive neuronal-specific responses in the mouse auditory cortex. Journal of Neuroscience, 35, 6703–6713.CrossRefGoogle Scholar
  77. Rockel, A. J., Hiorns, R. W., & Powell, T. P. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–244.CrossRefGoogle Scholar
  78. Rose, S. (1976). The conscious brain. New York: Vintage Books.Google Scholar
  79. Salazar, I. L., Caldeira, M. V., Curcio, M., & Duarte, C. B. (2015). The role of proteases in hippocampal synaptic plasticity: Putting together small pieces of a complex puzzle. Neurochemical Research, 41, 156–182.CrossRefGoogle Scholar
  80. Sammler, D., Kotz, S. A., Eckstein, K., Ott, D. V., & Friederici, A. D. (2010). Prosody meets syntax: The role of corpus callosum. Brain, 133, 2643–2655.CrossRefGoogle Scholar
  81. Saul, R. E., & Sperry, R. W. (1968). Absence of commissurotomy symptoms with agenesis of the corpus callosum. Neurology, 18, 307.Google Scholar
  82. Sekiguchi, A., Yokoyama, S., Kasahara, S., Yomogida, Y., Takeuchi, H., Ogawa, T., et al. (2011). Neural bases of a specific strategy for visuospatial processing in rugby players. Medicine and Science in Sports and Exercise, 43, 1857–1862.CrossRefGoogle Scholar
  83. Shen, K., Misic, B., Cipollini, B. N., Bezgin, G., Buschkuehl, M., Hutchinson, R. M., et al. (2015). Stable long-range interhemispheric coordination is supported by direct anatomical projections. Proceedings of the National Academy of Sciences of the United States of America, 112, 6473–6478.CrossRefGoogle Scholar
  84. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158–165.CrossRefGoogle Scholar
  85. Sigman, M., Peña, M., Goldin, A. P., & Ribeiro, S. (2014). Neuroscience and education: Prime time to build the bridge. Nature Neuroscience, 17, 497–502.CrossRefGoogle Scholar
  86. Simões, E. L., Bramati, I., Rodrigues, E., Franzoi, A., Moll, J., Lent, R., et al. (2012). Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees. Journal of Neuroscience, 32, 3211–3220.CrossRefGoogle Scholar
  87. Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153, 1219–1227.CrossRefGoogle Scholar
  88. Sperry, R. W. (1968). Hemisphere deconnection and unity in conscious awareness. American Psychologist, 23, 723–733.CrossRefGoogle Scholar
  89. Sporns, O., & Kotter, R. (2004). Motifs in brain networks. PLoS Biology, 2, e369.CrossRefGoogle Scholar
  90. Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker-listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences of the United States of America, 107, 14425–14430.CrossRefGoogle Scholar
  91. Stokes, D. E. (1997). Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.Google Scholar
  92. Tovar-Moll, F., Moll, J., de Oliveira-Souza, R., Bramati, I., Andreiuolo, P. A., & Lent, R. (2007). Neuroplasticity in human callosal dysgenesis: A diffusion tensor imaging study. Cerebral Cortex, 17, 531–541.CrossRefGoogle Scholar
  93. Tovar-Moll, F., Monteiro, M., Andrade, J., Bramati, I. E., Vianna-Barbosa, R., Marins, T., et al. (2014). Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum. Proceedings of the National Academy of Sciences of the United States of America, 111, 7843–7848.CrossRefGoogle Scholar
  94. Van Praag, H., Kempremann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.CrossRefGoogle Scholar
  95. Vogel, A. C., Church, J. A., Power, J. D., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2013). Functional network architecture of reading-related regions across development. Brain and Language, 125, 231–243.CrossRefGoogle Scholar
  96. Vollmann, H., Ragert, P., Conde, V., Villringer, A., Classen, J., Witte, O. W., et al. (2014). Instrument specific use-dependent plasticity shapes the anatomical properties of the corpus callosum: A comparison between musicians and non-musicians. Frontiers in Behavioral Neuroscience, 8, 245.CrossRefGoogle Scholar
  97. Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J. (2004). Sleep inspires insight. Nature, 427, 352–355.CrossRefGoogle Scholar
  98. Wamsley, E. J., Tucker, M. A., Payne, J. D., & Stickgold, R. (2010). A brief nap is beneficial for human route-learning: The role of navigation experience and EEG spectral power. Learning and Memory, 17, 332–336.CrossRefGoogle Scholar
  99. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.D’Or Institute of Research and EducationRio de JaneiroBrazil

Personalised recommendations