Advertisement

Journal of Productivity Analysis

, Volume 50, Issue 3, pp 85–100 | Cite as

Reconciling the Porter hypothesis with the traditional paradigm about environmental regulation: a nonparametric approach

  • Jean Pierre Huiban
  • Camilla Mastromarco
  • Antonio Musolesi
  • Michel Simioni
Article
  • 107 Downloads

Abstract

This paper estimates the impact of pollution abatement investments on the production technology of firms by pursuing two new directions. First, we take advantage of recent econometric developments in productivity, efficiency analysis and nonparametric kernel regression by adopting a conditional nonparametric frontier analysis. Second, we focus not only on the average effect but also search for potential nonlinearities. We provide new results suggesting that pollution abatement capital affects with a bell-shaped fashion technological catch-up (inefficiency distribution) and does not affect technological change (shifts in the frontier). These results have relevant implications both for modeling and for the purposes of advice on environmentally friendly policy.

Keywords

Conditional nonparametric frontier analysis Full and partial order frontiers Location-scale nonparametric regression Infinite order cross-validated local polynomial regression Separability condition Porter hypothesis 

Notes

Acknowledgements

We thank the editor William Greene, an associate editor and three anonymous referees for many useful suggestions. We are grateful to Jeffrey Racine for insights about infinite order cross-validated local polynomial regression and their computation, Léopold Simar for providing the Matlab code to compute the separability test, and Yves Surry and Massimiliano Mazzanti for insightful discussions on results. We also thank conference and seminar participants at the Panel Data Conference (Budapest, 2014), Nongh Lam University (Ho Chi Minh City, 2015), University of Ferrara (Ferrara, 2015), 8th VEAM (Thai Nguyen, 2015), Hoa Sen University (Ho Chi Minh City, 2015), Lameta seminar (Montpellier, 2016), 10th JRSS (Paris, 2016), and 15th EAAE Congress (Parma, 2017). A preliminary version of this paper was titled “The impact of pollution abatement investments on production technology: a nonparametric approach”. This work was funded by the French “Agence Nationale de la Recherche”(project ANR-11-ALID-0002). We would like to dedicate this paper in memoriam to our friend Jean-Pierre Huiban who initiated this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acemoglu D, Akcigit U, Hanley D, Kerr W (2016) Transition to clean technology. J Political Econ 124(1):52–104CrossRefGoogle Scholar
  2. Ackerberg DA, Caves K, Frazer G (2015) Identification properties of recent production function estimators. Econometrica 83(6):2411–2451CrossRefGoogle Scholar
  3. Aghion P, Dechezleprêtre A, Hemous D, Martin R, Van Reenen J (2016) Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. J Political Econ 124(1):1–51CrossRefGoogle Scholar
  4. Agreste (2009) Industries agricoles et alimentaires—Entreprises de 20 salariés et plus—Enquête annuelle d’entreprise—Résultats sectoriels et régionaux 2007. Ministère de l’Agriculture et de l’Alimentation, ParisGoogle Scholar
  5. Agreste (2017) Graphagri France 2017. Ministère de l’Agriculture et de l’Alimentation, ParisGoogle Scholar
  6. Aiken DV, Fare R, Grosskopf S, Pasurka CA (2009) Pollution Abatement and Productivity Growth: Evidence from Germany, Japan, the Netherlands, and the United States. Environ Resour Econ 44:11–28CrossRefGoogle Scholar
  7. Ambec S, Barla P (2002) A theoretical foundation to the porter hypothesis. Econ Lett 3:355–360CrossRefGoogle Scholar
  8. Ambec S, Barla P (2007) Survol des fondements théoriques de l’hypothèse de Porter. L'Actualité économique 83(3):399–413CrossRefGoogle Scholar
  9. Ambec S, Cohen MA, Stewart E, Lanoie P (2013) The Porter Hypothesis at 20: Can environmental regulation enhance innovation and competitiveness? Rev Environ Econ Policy 7:2–22CrossRefGoogle Scholar
  10. André‚ FJ, González P, Porteiro N (2002) Strategic Quality Competition and the Porter Hypothesis. Journal of Environmental Economics and Management 57:182–194CrossRefGoogle Scholar
  11. André FJ (2015) Strategic Effects and the Porter Hypothesis. MPRA Paper 62237. University Library of Munich, GermanyGoogle Scholar
  12. André FJ, González P, Porteiro N (2002) Strategic Quality Competition and the Porter Hypothesis. J Environ Econ Manag 57:182–194CrossRefGoogle Scholar
  13. Bădin LC, Daraio L, Simar L (2012) How to measure the impact of environmental factors in a nonparametric production model. Eur J Oper Res 223:818–833CrossRefGoogle Scholar
  14. Battese GE, Coelli TJ (1995) A Model for Technical Efficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empir Econ 20:325–332CrossRefGoogle Scholar
  15. Broberg T, Marklund PO, Samakovlis E, Hammar H (2013) Testing the Porter hypothesis: the effects of environmental investments on efficiency in Swedish industry. J Product Anal 40(1):43–56CrossRefGoogle Scholar
  16. Cazals C, Florens J-P, Simar L (2002) Nonparametric frontier estimation: a robust approach. J Econom 106:1–25CrossRefGoogle Scholar
  17. Coelli T, Perelman S, Romano E (1999) Accounting for Environmental Influences in Stochastic Frontier Models: with Application to International Airlines. J Product Anal 11:251–273CrossRefGoogle Scholar
  18. Daouia A, Simar L (2007) Nonparametric Efficiency Analysis: A Multivariate Conditional Quantile Approach. J Econom 140:375–400CrossRefGoogle Scholar
  19. Daraio C, Simar L (2005) Introducing environmental variables in nonparametric frontier models: a probabilistic approach. J Product Anal 24:93–121CrossRefGoogle Scholar
  20. Daraio C, Simar L (2007) Advanced Robust and Nonparametric Methods in Efficiency Analysis. Springer, New-YorkGoogle Scholar
  21. Daraio C, Simar L, Wilson PW (2017) Central Limit Theorems for Conditional Efficiency Measures and Tests of the “Separability”Condition in Nonparametric, Two-Stage Models of Production. The Econometrics Journal, online firstGoogle Scholar
  22. Fan J, Gijbels I (1996) Local polynomial modelling and its applications: monographs on statistics and applied probability 66 (Vol. 66). CRC PressGoogle Scholar
  23. Gandhi A, Navarro S, Rivers D (2017) How heterogeneous is productivity? A comparison of gross output and value added. Journal of Political Economy, forthcomingGoogle Scholar
  24. Gray WB, Shadbegian RJ (1998) Environmental regulation, investment timing, and technology choice. J Ind Econ 46(2):235–256CrossRefGoogle Scholar
  25. Gray WB, Shadbegian RJ (2003) Plant vintage, technology, and environmental regulation. J Environ Econ Manag 46(3):384–402CrossRefGoogle Scholar
  26. Gullickson W (1995) Measurement of productivity growth in U.S. manufacturing. Mon Labor Rev 118(7):13–28Google Scholar
  27. Halkos GE, Managi S (2017) Measuring the Effect of Economic Growth on Countries' Environmental Efficiency: A Conditional Directional Distance Function Approach Environmental and Resource Economics 68(3):753–775CrossRefGoogle Scholar
  28. Halkos GE, Tzeremes NG (2012) Measuring German regions’ environmental efficiency: a directional distance function approach. Lett Spat Resour Sci 5:7–16CrossRefGoogle Scholar
  29. Halkos GE, Tzeremes NG (2013) A conditional distance function approach for measuring regional environmental efficiency: Evidence frim UK regions. Eur J Oper Res 227(1):182–189CrossRefGoogle Scholar
  30. Halkos GE, Tzeremes NG (2014) Measuring the Kioto protocol agrreement on countries’ environmental efficiency in CO2 emissions: An application of conditional full frontiers. J Product Anal 41(3):367–382CrossRefGoogle Scholar
  31. Halkos GE, Stern DI, Tzeremes NG (2016) Population, economic growth and regional environmental inefficiency: evidence from US states. J Clean Prod 112:4288–4295CrossRefGoogle Scholar
  32. Hall P, Racine JS, Li Q (2004) Cross-validation and the estimation of conditional probability densities. J Am Stat Assoc 99:1015–1026CrossRefGoogle Scholar
  33. Hall P, Li Q, Racine JS (2007) Nonparametric estimation of regression functions in the presence of irrelevant regressors. Rev Econ Stat 89:784–789CrossRefGoogle Scholar
  34. Hall PG, Racine JS (2015) Infinite Order Cross-validated Local Polynomial Regression. J Econom 185:510–525CrossRefGoogle Scholar
  35. He Z, Opsomer JD (2015) Local polynomial regression with an ordinal covariate. J Nonparametr Stat 27(4):516–531CrossRefGoogle Scholar
  36. Hicks JR (1932) The theory of wages, 1st ed. Macmillan, LondonGoogle Scholar
  37. Jaffe AB, Palmer K (1997) Environmental regulation and innovation: A panel data study. Rev Econ Stat 79:610–619CrossRefGoogle Scholar
  38. Jaffe AB, Peterson SR, Portney PR, Stavins RN (1995) Environmental Regulation and the Competitiveness of U.S. Manufacturing: What Does the Evidence Tell Us? J Econ Lit 23:132–163Google Scholar
  39. Jorgenson DW, Wilcoxen PJ (1990) Environmental Regulation and U.S. Economic Growth. Rand J Econ 21:314–340CrossRefGoogle Scholar
  40. Kallis G, Butler D (2001) The EU water framework directive: measures and implications. Water Policy 3:125–142CrossRefGoogle Scholar
  41. Kiefer NM, Racine JS (2017) The smooth colonel and the reverend find common ground. Econom Rev 36(1-3):241–256CrossRefGoogle Scholar
  42. Li Q, Racine JS (2007) Nonparametric Econometrics: Theory and Practice. Princeton University PressGoogle Scholar
  43. Li D, Simar L, Zelenyuk V (2016) Generalized nonparametric smoothing with mixed discrete and continuous data. Comput Stat Data Anal 100:424–444CrossRefGoogle Scholar
  44. Mastromarco C, Simar L (2015) Effect of FDI and Time on Catching up: New Insights from a Conditional Nonparametric Frontier Analysis. J Appl Econ 30:826–847CrossRefGoogle Scholar
  45. Mohr RD (2002) Technical Change, External Economies, and the Porter Hypothesis. J Environ Econ Manag 43:158–168CrossRefGoogle Scholar
  46. Nie Z, Racine JS (2012) The crs Package: Nonparametric Regression Splines for Continuous and Categorical Predictors R Journal 4(2):48–56Google Scholar
  47. Palmer KW, Oates WE, Portney PR (1995) Tightening Environmental Standards The Benefit-Cost or the No-Cost Paradigm. J Econ Perspect 9:119–132CrossRefGoogle Scholar
  48. Porter MS (1991) America’s Green Strategy. Sci Am 264:168CrossRefGoogle Scholar
  49. Porter MS, Van der Linde C (1995) Toward a New Conception of the Environment-Competitiveness Relationship. J Econ Perspect 9:97–118CrossRefGoogle Scholar
  50. Salin V, Atkins JA, Salame O (2002) Value Added in Food Manufacturing and Retailing: A Ratio Analysis of Major U.S. States. J Food Distrib Res 33(1):136–150Google Scholar
  51. Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J Econom 136(1):31–64CrossRefGoogle Scholar
  52. Simar L, Wilson PW (2011) Two-stage DEA: caveat emptor. J Product Anal 36:205–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jean Pierre Huiban
    • 1
  • Camilla Mastromarco
    • 2
  • Antonio Musolesi
    • 3
  • Michel Simioni
    • 4
    • 5
  1. 1.INRA-ALISSIvry sur SeineFrance
  2. 2.Dipartimento di Scienze dell’EconomiaUniversity of SalentoLecceItaly
  3. 3.Department of Economics and Management (DEM)University of Ferrara, and SEEDSFerraraItaly
  4. 4.MOISA, INRAUniversity of MontpellierMontpellierFrance
  5. 5.IREEDS-VCREMEHanoiVietnam

Personalised recommendations