Skip to main content
Log in

The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

Based on the seminal paper of Farrell (J R Stat Soc Ser A (General) 120(3):253–290, 1957), researchers have developed several methods for measuring efficiency. Nowadays, the most prominent representatives are nonparametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA), both introduced in the late 1970s. Researchers have been attempting to develop a method which combines the virtues—both nonparametric and stochastic—of these “oldies”. The recently introduced Stochastic non-smooth envelopment of data (StoNED) by Kuosmanen and Kortelainen (J Prod Anal 38(1):11–28, 2012) is such a promising method. This paper compares the StoNED method with the two “oldies” DEA and SFA and extends the initial Monte Carlo simulation of Kuosmanen and Kortelainen (J Prod Anal 38(1):11–28, 2012) in several directions. We show, among others, that, in scenarios without noise, the rivalry is still between the “oldies”, while in noisy scenarios, the nonparametric StoNED PL now constitutes a promising alternative to the SFA ML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Thanks to an editor’s suggestion, we want to point out that a functional form misspecification has a different and in general greater effect when a deterministic, parametric method instead of a stochastic, parametric method is applied. While a misspecification error directly influences the estimated inefficiency term of a deterministic, parametric method, a misspecification error of a stochastic, parametric method is (at least partly) covered by the random noise term, which shows (at least partly) the approximation error.

  2. Axioms: Convexity, Inefficiency (“Free Disposability”), Ray Unboundedness (“Returns to Scale”) and Minimum Extrapolation, see Banker et al. (1984).

  3. This envelopment formulation is usually the preferred form, because it has fewer constraints than the multiplier form (see Coelli et al. (2005)).

  4. The normal-half normal model is the most common model. There are other models which mainly differ in the assumption with respect to the inefficiency distribution, e.g. the normal-exponential model. For a comprehensive treatment of the different models, see Kumbhakar and Lovell (2003).

  5. StataSE 11.2 is used for the implementation of the DGP and the estimation of DEA while General Algebraic Modeling System (GAMS) Version 23.3.2 is used to estimate the other four methods. The codes are available upon request from the authors.

References

  • Adler N, Yazhemsky E (2010) Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction. Eur J Oper Res 202(1):273–284

    Article  Google Scholar 

  • Afriat SN (1972) Efficiency estimation of production functions. Int Econ Rev 13(3):568–598

    Article  Google Scholar 

  • Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production models. J Econ 6:21–37

    Article  Google Scholar 

  • Andor M, Hesse F (2011) A Monte Carlo simulation comparing DEA, SFA and two simple approaches to combine efficiency estimates. CAWM Discussion Papers 51, Center of Applied Economic Research Münster (CAWM), University of Münster

  • Badunenko O, Henderson DJ, Kumbhakar SC (2012) When, where and how to perform efficiency estimation. J Roy Stat Soc Ser A (Stat Soc) 175(4):863–892

    Article  Google Scholar 

  • Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30(9):1078–1092

    Article  Google Scholar 

  • Banker RD, Gadh VM, Gorr WL (1993) A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis. Eur J Oper Res 67(3):332–343

    Article  Google Scholar 

  • Banker RD, Cooper WW, Grifell-Tajte E, Pastor JT, Wilson PW, Ley E, Lovell CAK (1994) Validation and generalization of DEA and its uses. TOP 2(2):249–314

    Article  Google Scholar 

  • Banker RD, Cooper WW, Seiford LM, Thrall RM, Zhu J (2004) Returns to scale in different DEA models. Eur J Oper Res 154(2):345–362

    Article  Google Scholar 

  • Battese GE, Coelli TJ (1988) Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J Econ 38(3):387–399

    Article  Google Scholar 

  • Bauer P, Berger A, Ferrier G, Humphrey D (1998) Consistency conditions for regulatory analysis of financial institutions: a comparison of frontier efficiency methods. J Econ Bus 50(2):85–114

    Article  Google Scholar 

  • Bogetoft P, Otto L (2011) Benchmarking with DEA, SFA, and R. Springer, Berlin

    Book  Google Scholar 

  • Caudill SB, Ford JM (1993) Biases in frontier estimation due to heteroscedasticity. Econ Lett 41(1):17–20

    Article  Google Scholar 

  • Caudill SB, Ford JM, Gropper DM (1995) Frontier estimation and firm-specific inefficiency measures in the presence of heteroscedasticity. J Bus Econ Stat 13:105–111

    Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444

    Article  Google Scholar 

  • Coelli TJ (1995) Estimators and hypothesis tests for a stochastic frontier function: a monte carlo analysis. J Prod Anal 6(4):247–268

    Article  Google Scholar 

  • Coelli TJ, Rao DSP, O’ Donnell CJ, Battese GE (2005) An introduction to efficiency and productivity analysis. Springer, Berlin

    Google Scholar 

  • Cook WD, Seiford LM (2009) Data envelopment analysis (DEA)-Thirty years on. Eur J Oper Res 192(1):1–17

    Article  Google Scholar 

  • Cordero JM, Pedraja F, Santin D (2009) Alternative approaches to include exogenous variables in DEA measures: a comparison using Monte Carlo. Comput Oper Res 36(10):2699–2706

    Article  Google Scholar 

  • Fan Y, Li Q, Weersink A (1996) Semiparametric estimation of stochastic production frontier models. J Bus Econ Stat 14(4):460–468

    Google Scholar 

  • Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A (General) 120(3):253–290

    Article  Google Scholar 

  • Gong B, Sickles RC (1992) Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data. J Econ 51:259–284

    Article  Google Scholar 

  • Greene WH (2008) The econometric approach to efficiency analysis. In: Fried H, Lovell CAK, Schmidt S (eds) The measurement of productive efficiency and productivity growth. Oxford University Press, New York, pp 92–250

    Chapter  Google Scholar 

  • Hadri K (1999) Estimation of a doubly heteroscedastic stochastic frontier cost function. J Bus Econ Stat 17(3):359–363

    Google Scholar 

  • Hadri K, Guermat C, Whittaker J (2003) Estimation of technical inefficiency effects using panel data and doubly heteroscedastic stochastic production frontiers. Empirical Econ 28(1):203–222

    Article  Google Scholar 

  • Haney AB, Pollitt MG (2009) Efficiency analysis of energy networks: An international survey of regulators. Energy Policy 37(12):5814–5830

    Article  Google Scholar 

  • Jamasb T, Pollitt MG (2001) Benchmarking and regulation: international electricity experience. Utilities Policy 9:107–130

    Article  Google Scholar 

  • Jensen U (2005) Misspecification preferred: the sensitivity of inefficiency rankings. J Prod Anal 23:223–244

    Article  Google Scholar 

  • Jondrow J, Lovell CAK, Materov IS, Schmidt P (1982) On the estimation of technical inefficiency in the stochastic frontier production function model. J Econ 19(3):233–238

    Article  Google Scholar 

  • Kneip A, Simar L (1996) A general framework for frontier estimation with panel data. J Prod Anal 7:187–212

    Article  Google Scholar 

  • Kneip A, Simar L, Wilson PW (2008) Asymptotics and consistent bootstraps for DEA estimators in non-parametric frontier models. Econ Theory 24(6):1663–1697

    Article  Google Scholar 

  • Kumbhakar SC (1997) Efficiency estimation with heteroscedasticity in a panel data model. Appl Econ 29(3):379–386

    Article  Google Scholar 

  • Kumbhakar SC, Lovell CAK (2003) Stochastic frontier analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kumbhakar SC, Park BU, Simar L, Tsionas EG (2007) Nonparametric stochastic frontiers: A local maximum likelihood approach. J Econ 137:1–27

    Article  Google Scholar 

  • Kuosmanen T (2008) Representation theorem for convex nonparametric least squares. Econ J 11(2):308–325

    Google Scholar 

  • Kuosmanen T (2012a) Stochastic semi-nonparametric frontier estimation of electricity distribution networks: application of the StoNED method in the Finnish regulatory model. Energy Economics p doi:10.1016/j.eneco.2012.03.005

  • Kuosmanen T (2012b) Web site: StoNED Stochastic Nonparametric Envelopment of Data: http://www.nomepre.net/index.php/computations

  • Kuosmanen T, Kortelainen M (2012) Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints. J Prod Anal 38(1):11–28

    Article  Google Scholar 

  • Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Int Econ Rev 18(2):435–444

    Article  Google Scholar 

  • Mortimer D (2002) Competing Methods for Effciency Measurement: A systematic review of direct DEA vs SFA/DFA comparisons., Centre for Health Program Evaluation (CHPE), Working Paper 136

  • Olson JA, Schmidt P, Waldman DM (1980) A Monte Carlo study of estimators of stochastic frontier production functions. J Econ 13:67–82

    Article  Google Scholar 

  • Ondrich J, Ruggiero J (2001) Efficiency measurement in the stochastic frontier model. Eur J Oper Res 129(2):434–442

    Article  Google Scholar 

  • Perelman S, Santin D (2009) How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency meassurement. Eur J Oper Res 199(1):303–310

    Article  Google Scholar 

  • Resti A (2000) Efficiency measurement for multi-product industries: A comparison of classic and recent techniques based on simulated data. Eur J Oper Res 121(3):559–578

    Article  Google Scholar 

  • Ruggiero J (1999) Efficiency estimation and error decomposition in the stochastic frontier model: A Monte Carlo analysis. Eur J Oper Res 115(3):555–563

    Article  Google Scholar 

  • Simar L, Zelenyuk V (2011) Stochastic FDH/DEA estimatiors for frontier analysis. J Prod Anal 36(1):1–20

    Article  Google Scholar 

  • Winsten CB (1957) Discussion on Mr. Farrell’s paper. J R Stat Soc Ser A (General) 120(3):282–284

    Google Scholar 

  • Yu C (1998) The effects of exogenous variables in efficiency measurement - A monte carlo study. Eur J Oper Res 105(3):569–580

    Article  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to the participants of the 8th Asia-Pacific Productivity Conference (APPC) in Bangkok, Thailand, the 4th Workshop on Efficiency and Productivity Analysis (HAWEPA) in Halle, Germany, the 12th European Workshop on Efficiency and Productivity Analysis (EWEPA) in Verona, Italy, and the 11th IAEE European Conference in Vilnius, Lithuania, for providing valuable comments that have led to a considerable improvement of earlier versions of this paper. Furthermore, we would like to thank Brian Bloch, Finn Førsund, William Greene, Arne und Geraldine Henningsen, Uwe Jensen, Choonjoo Lee, Colin Vance, the editors and two anonymous referees for their helpful comments and suggestions. The authors are responsible for all errors and omissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Andor.

Appendix

Appendix

The appendix can be found online at: http://www.rwi-essen.de/media/content/pages/publikationen/ruhr-economic-papers/REP394appendix.pdf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andor, M., Hesse, F. The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA). J Prod Anal 41, 85–109 (2014). https://doi.org/10.1007/s11123-013-0354-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-013-0354-y

Keywords

JEL Classification

Navigation