Journal of Productivity Analysis

, Volume 41, Issue 1, pp 69–83 | Cite as

A metafrontier directional distance function approach to assessing eco-efficiency

  • Mercedes Beltrán-Esteve
  • José A. Gómez-Limón
  • Andrés J. Picazo-Tadeo
  • Ernest Reig-Martínez


This paper uses directional distance functions to extend the non-parametric metafrontier approach to efficiency measurement proposed by O’Donnell et al. (Empir Econ 34:231–255, 2008) to the assessment of technological differences in eco-efficiency between groups of producers. Furthermore, eco-efficiency is assessed at the level of specific environmental pressure management. This methodology is applied to a sample of Spanish olive producers that belong to both traditional mountain and traditional plain growing systems. We find great potential for both olive growing systems to reduce environmental pressures. In terms of pressures on natural resources, the most eco-efficient technology is the traditional plain system, while the traditional mountain system is the most eco-efficient when considering pressures on biodiversity. These results might help policymakers design strategies to improve the performance of olive growing and meet the demands of society regarding the economic and ecological functions of this farming activity.


Agro-environmental policy Data envelopment analysis Directional distance functions Economic-ecological efficiency Metafrontier Olive farming Spain 

JEL Classification

C61 Q12 Q57 Q58 



The authors would like to express their gratitude to the anonymous reviewers. The research was co-financed by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (projects AGL2010-17560-C02-01/02, ECO2011-30260-C03-01 and ECO2012-32189), the Andalusian Department of Economy, Innovation and Science (project AGR-5892) and the Generalitat Valenciana (PROMETEO 2009/098).


  1. Álvarez A, Del Corral J (2010) Identifying different technologies using a latent class model. Extensive versus intensive dairy farms. Eur Rev Agric Econ 37(2):231–250CrossRefGoogle Scholar
  2. Amores A, Contreras I (2009) New approach for the assignment of new European agricultural subsidies using scores from data envelopment analysis: application to olive-growing farms in Andalusia (Spain). Eur J Oper Res 193(3):718–729CrossRefGoogle Scholar
  3. Banker R, Charnes R, Cooper W (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30(9):1078–1092CrossRefGoogle Scholar
  4. Battese G, Rao D (2002) Technology gap, efficiency and a stochastic metafrontier function. Int J Bus Econ 1(2):87–93Google Scholar
  5. Battese G, Rao D, O’Donnell C (2004) A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J Prod Anal 21(1):91–103CrossRefGoogle Scholar
  6. Beaufoy G, Pienkowski M (2000) The environmental impact of olive oil production in the European Union: practical options for improving the environmental impact. European Commission, BrusselsGoogle Scholar
  7. Chambers R, Chung Y, Färe R (1998) Profit, directional distance functions and Nerlovian efficiency. J Optim Theory Appl 98(2):351–364CrossRefGoogle Scholar
  8. Charnes A, Cooper W, Rhodes E (1981) Evaluating program and managerial efficiency: an application of data envelopment analysis to program follow through. Manag Sci 27(6):668–697CrossRefGoogle Scholar
  9. Cherchye L, Kuosmanen T, Post T (2000) Why convexity? An assessment of convexity axioms in DEA. Helsinki School of Economics and Business Administration Working Papers, W-270Google Scholar
  10. Cherchye L, Kuosmanen T, Post T (2001) FDH directional distance functions with an application to European commercial banks. J Prod Anal 15:201–215CrossRefGoogle Scholar
  11. Cooper W, Seiford L, Tone K (2007) Data envelopment analysis. A comprehensive text with models, applications, references and DEA-Solver software. Springer, New YorkGoogle Scholar
  12. Cooper T, Hart K, Baldock D (2009) The provision of public goods through agriculture in the European Union. Report Prepared for DG Agriculture and Rural Development, Contract No 30-CE-0233091/00-28. Institute for European Environmental Policy, LondonGoogle Scholar
  13. De Koeijer T, Wossink G, Struik P, Renkema J (2002) Measuring agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers. J Environ Manag 66(1):9–17CrossRefGoogle Scholar
  14. De Witte K, Marques R (2009) Capturing the environment, a metafrontier approach to the drinking water sector. Int Trans Oper Res 16:257–271CrossRefGoogle Scholar
  15. Dios-Palomares R, Martínez-Paz J (2011) Technical, quality and environmental efficiency of the olive oil industry. Food Policy 36(4):526–534CrossRefGoogle Scholar
  16. Duarte F, Jones N, Fleskens L (2008) Traditional olive orchards on sloping land: sustainability or abandonment? J Environ Manag 89(2):86–98CrossRefGoogle Scholar
  17. Dyckhoff H, Allen K (2001) Measuring ecological efficiency with data envelopment analysis (DEA). Eur J Oper Res 132(2):312–325CrossRefGoogle Scholar
  18. EC, European Commission (2010) LIFE among the olives: Good practice in improving environmental performance in the olive oil sector. Office for Official Publications of the European Union, LuxembourgGoogle Scholar
  19. EEA, European Environment Agency (2004) High nature value farmland. Characteristics, trends and policy challenges. EEA report No 1/2004. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  20. Färe R, Grosskopf S (2000) Theory and application of directional distance functions. J Prod Anal 13(2):93–103CrossRefGoogle Scholar
  21. Foley J, DeFries R, Asner G, Barford C, Bonan G, Carpenter S, Chapin F, Coe M, Daily G, Gibbs H, Helkowski J, Holloway T, Howard E, Kucharik C, Monfreda C, Patz J, Prentice C, Ramankutty N, Snyder P (2005) Global consequences of land use. Science 309(5734):570–574CrossRefGoogle Scholar
  22. Goetz SJ, Brouwer FM (2010) New perspectives on agri-environmental policies; a multidisciplinary and transatlantic approach. Routledge, LondonGoogle Scholar
  23. Gómez-Calero J, Battany M, Renschler C, Fereres E (2003) Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manag 19(1):127–134CrossRefGoogle Scholar
  24. Gómez-Limón JA, Arriaza M (2011) La sostenibilidad de las explotaciones de olivar en Andalucía. Analistas Económicos de Andalucía, Málaga (in Spanish)Google Scholar
  25. Gómez-Limón JA, Picazo-Tadeo AJ, Reig-Martínez E (2012) Eco-efficiency assessment of olive farms in Andalusia. Land Use Policy 29(2):395–406CrossRefGoogle Scholar
  26. González E, Cárcaba A (2004) Efficiency improvement through learning. Int J Technol Manag 27(6/7):628–638CrossRefGoogle Scholar
  27. Hayami Y, Ruttan V (1970) Agricultural productivity differences among countries. Am Econ Rev 60(5):895–911Google Scholar
  28. Hoang V, Rao D (2010) Measuring and decomposing sustainable efficiency in agricultural production: a cumulative energy balance approach. Ecol Econ 69(9):1765–1776CrossRefGoogle Scholar
  29. Huppes G, Ishikawa M (2005) A framework for quantified eco-efficiency analysis. J Ind Ecol 9(4):25–41CrossRefGoogle Scholar
  30. Kontolaimou A, Tsekouras K (2010) Are cooperatives the weakest link in European banking? A non-parametric metafrontier approach. J Bank Finance 34(8):1946–1957CrossRefGoogle Scholar
  31. Korhonen PJ, Luptacik M (2004) Eco-efficiency analysis of power plants: an extension of data envelopment analysis. Eur J Oper Res 154(2):437–446CrossRefGoogle Scholar
  32. Kounetas K, Mourtos I, Tsekouras K (2009) Efficiency decompositions for heterogeneous technologies. Eur J Oper Res 199(1):209–218CrossRefGoogle Scholar
  33. Krivonozhko V, Førsund F, Rozhnov A, Lychev A (2012) Measurement of returns to scale using a non-radial DEA model. Doklady Math 85(1):144–148 (Published in Russian in Doklady Akademii Nauk 442:605–609)CrossRefGoogle Scholar
  34. Kuosmanen T, Kortelainen M (2005) Measuring eco-efficiency of production with data envelopment analysis. J Ind Ecol 9(4):59–72CrossRefGoogle Scholar
  35. Lal R (2004) Carbon emission from farm operation. Environ Int 30(7):981–990CrossRefGoogle Scholar
  36. Moreira V, Bravo-Ureta B (2010) Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model. J Prod Anal 33:33–45CrossRefGoogle Scholar
  37. Mouron P, Scholz R, Nemecek T, Weber O (2006) Life cycle management on Swiss fruit farms: relating environmental and income indicators for apple growing. Ecol Econ 58(3):561–578CrossRefGoogle Scholar
  38. O’Donnell C, Rao D, Battese G (2008) Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir Econ 34(2):231–255CrossRefGoogle Scholar
  39. OECD, Organization for Economic Co-operation and Development (1998) Eco-efficiency. OECD, ParisGoogle Scholar
  40. Picazo-Tadeo AJ, Reig-Martínez E (2006) Agricultural externalities and environmental regulation: evaluating good practice in citrus production. Appl Econ 38(11):1327–1334CrossRefGoogle Scholar
  41. Picazo-Tadeo AJ, Reig-Martínez E, Hernández-Sancho F (2005) Directional distance functions and environmental regulation. Resour Energy Econ 27(2):131–142CrossRefGoogle Scholar
  42. Picazo-Tadeo AJ, Reig-Martínez E, Gómez-Limón JA (2011) Assessing farming eco-efficiency: a data envelopment analysis approach. J Environ Manag 92(4):1154–1164CrossRefGoogle Scholar
  43. Picazo-Tadeo AJ, Beltrán-Esteve M, Gómez-Limón JA (2012) Assessing eco-efficiency with directional distance functions. Eur J Oper Res 220(3):798–809CrossRefGoogle Scholar
  44. Piot-Lepetit I, Le Moing M (2007) Productivity and environmental regulation: the effect of the nitrates directive in the French pig sector. Environ Resour Econ 38(4):433–446CrossRefGoogle Scholar
  45. Poghosyan T, Kumbhakar S (2010) Heterogeneity of technological regimes and banking efficiency in former socialist economies. J Prod Anal 33:19–31CrossRefGoogle Scholar
  46. Renard K, Foster G, Weesies G, McCool D, Yoder D (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). US Department of Agriculture, WashingtonGoogle Scholar
  47. Sáez-Fernández F, Picazo-Tadeo AJ, Llorca-Rodríguez C (2012) Do labour societies perform differently to cooperatives? Evidence from the Spanish building industry. Ann Public Co-op Econ 83(1):61–81CrossRefGoogle Scholar
  48. Sarkis J, Talluri S (2004) Ecoefficiency measurement using data envelopment analysis: research and practitioner issues. J Environ Assess Policy Manag 6(1):91–123CrossRefGoogle Scholar
  49. Schmidheiny S, Zorraquin JL (1996) Financing change, the financial community, eco-efficiency and sustainable development. MIT Press, CambridgeGoogle Scholar
  50. Seiford LM, Zhu J (2002) Modeling undesirable factors in efficiency evaluation. Eur J Oper Res 142(1):16–20CrossRefGoogle Scholar
  51. Smith P, Martino D, Cai Z (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363(1492):789–813CrossRefGoogle Scholar
  52. Solís D, Bravo-Ureta B, Quiroga R (2009) Technical efficiency among peasant farmers participating in natural resource management programmes in Central America. J Agric Econ 54(11):521–528Google Scholar
  53. Tiedemann T, Francksen T, Latacz-Lohmann U (2011) Assessing the performance of German Bundesliga football players: a non-parametric metafrontier approach. CEJOR 19:571–587CrossRefGoogle Scholar
  54. Torgersen A, Førsund F, Kittelsen S (1996) Slack-adjusted efficiency measures and ranking of efficient units. J Prod Anal 7(4):379–398CrossRefGoogle Scholar
  55. United Nations (2009) Eco-efficiency indicators: measuring resource-use efficiency and the impact of economic activities on the environment. Greening of Economic Growth Series, ST/ESCAP/2561Google Scholar
  56. Vanwalleghem T, Laguna A, Giráldez JV, Jiménez-Hornero FJ (2010) Applying a simple methodology to assess historical soil erosion in olive orchards. Geomorphology 114(3):294–302CrossRefGoogle Scholar
  57. WBCSD, World Business Council for Sustainable Development (2000) Measuring ecoefficiency, A Guide to Reporting Company Performance. WBCSD, GenevaGoogle Scholar
  58. Willock J, Deary I, Edwards-Jones G, Gibson G, McGregor M, Sutherland A, Dent J, Morgan O, Grieve R (1999) The role of attitudes and objectives in farmer decision-making: business and environmentally oriented behaviour in Scotland. J Agric Econ 50(2):286–303CrossRefGoogle Scholar
  59. Xiloyannis C, Martinez Raya A, Kosmas C, Favia M (2008) Semi-intensive olive orchards on sloping land: requiring good land husbandry for future development. J Environ Manag 89(2):110–119CrossRefGoogle Scholar
  60. Zhang B, Bi J, Fan Z, Yuan Z, Ge J (2008) Eco-efficiency analysis of industrial system in China: a data envelopment analysis approach. Ecol Econ 68(1/2):306–316CrossRefGoogle Scholar
  61. Zhou P, Ang B, Zhou D (2010) Weighting and aggregation in composite indicator construction: a multiplicative optimization approach. Soc Indic Res 96:169–181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mercedes Beltrán-Esteve
    • 1
  • José A. Gómez-Limón
    • 2
  • Andrés J. Picazo-Tadeo
    • 1
  • Ernest Reig-Martínez
    • 1
  1. 1.Departamento de Economía Aplicada IIUniversidad de ValenciaValenciaSpain
  2. 2.Departamento de Economía, Sociología y Política AgrariasUniversidad de CórdobaCórdobaSpain

Personalised recommendations